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Chapter 1

IQ Signals

1.1 Carrier waves, amplitude and phase

Learning objectives

In this section, we learn the mathematics of a general communications signal waveform comprising
a carrier wave whose amplitude and phase is modified (modulated) in step with a message signal. In
this section, we describe how the communications signal may be written as the sum of two complex-
valued waveforms resulting in a real-valued waveform.

Introduction

Telecommunications is defined by Webster’s dictionary as ”the science and technology of communi-
cations at a distance by electronic transmission”.

A communications signal carries a message over a distance from point A to point B using a
carrier wave.

Radio (or optical) waves are used to carry a message over a distance determined by the link
budget. The radio waves travel through a channel which may be free space (wireless) or via trans-
mission lines (e.g. waveguide, optical fiber, microstrip). The radio wave (called a carrier wave) c(t)
with a defined frequency is ”modulated” (modified) by the message signal m(t). In other words
the amplitude and/or phase of the carrier wave is modified so as to include the information stored
within the message.

The modified (modulated) carrier wave is called a communications signal s(t) and has 3 main
attributes: frequency, amplitude and phase.

A communications system transmits a message m(t) to by first modulating the carrier wave c(t)
with the message m(t) to create the communications signal s(t) and transmits s(t) as a radio (or
optical) wave. s(t) is degraded by noise and interference on the channel. The system receives the
noisy and distorted s(t) and extracts the message m(t) by a process called demodulation.

7



CHAPTER 1. IQ SIGNALS 8

x

y

1

1

φ

π
4

3π
4

5π
8

7π
8

π
2

π
2

π 2π
π
4

π
2

3π
4

π 5π
8

3π
2

7π
8

2π

−1

−0.5

0.5

1

Figure 1.1: A cosine wave being created by projecting a moving point on a unit circle.

We wish to find a mathematical way to describe s(t). The mathematical description of s(t) and
in particular the information contained in the amplitude and phase can take several forms. We
choose to describe s(t) using complex signals based on Euler’s equation ejθ = cosθ + jsinθ. The
reason for this choice is that complex signals are used in software-defined radios in which many
of the functions of a communications systems such as frequency-shifting, filtering, modulation and
demodulation are complex functions (complex arithmetic) implemented in software.

1.1.1 Carrier wave

We begin by considering the carrier wave, which is a ”pure” sinewave, such as would be emitted by
a laser. It contains one and only one frequency and has constant amplitude and phase that do not
change with time. We will call this pure sine wave c(t).

We can describe the carrier wave mathematically as c(t) = cos 2πfct or c(t) = sin 2πfct where fc
is the frequency of the carrier wave.

The carrier wave is a real (not complex) waveform that can be represented as a real function of
time and as a time-varying analog (real) voltage and plotted on an oscilloscope and connected to
a transmission line (e.g. coaxial cable, fiber, waveguide, microstrip) to carry it from one point to
another, or connected to an antenna to radiate it into space.

A cosine or sine wave is obtained from the projection of a point moving to trace out a unit circle.

Note that we get the same cosine wave regardless of the direction of rotation, but we get the
opposite polarity sine wave when we reverse the direction of rotation.

Using Euler’s equation ejθ = cosθ+ jsinθ and also cosθ = ejθ+e−jθ

2 we can write c(t) = ej2πfct +
e−j2πfct . Thus c(t) can be represented mathematically as the sum of two complex exponentials,
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one positive and one negative. There is a scaling factor of 2 that is not important for the present
discussion.

Euler’s equation introduces the idea of complex numbers (z = ejθ = cos θ + j sin θ) that can be
written in polar or rectangular form. We also introduce complex functions of time (z(t) = ej2πfct =
cos2πfct+ jsin2πfct) written in polar or rectangular form.

Complex numbers are used in many contexts including communications signals and digital signal
processing (transfer function of digital filters).

More generally we can write a complex number z as

z = aejθ

= a cos θ + ja sin θ

= x+ jy

(1.1)

where a is the magnitude, θ is the phase, x is the real part, y is the imaginary part. We write a
complex function of time z(t) as

z(t) = a(t)ejθ(t)

= a(t) cos θ(t) + ja(t) sin θ(t)

= x(t) + jy(t)

(1.2)

where a(t) is the magnitude, θ(t) is the phase, x(t) is the real part, y(t) is the imaginary part.

How do we plot a complex function of time? One method is to plot both the amplitude and
phase as two separate 2-D plots, or plot the real part and the imaginary part as two separate 2-D
plots.

Another method is to visualize the positive complex exponential z(t) = ej2πfct in 3 dimensions:
real axis (real), imaginary axis (imag) and time. A 3-D plot can be made in Matlab using the
command plot3(t, x, y). This 3-D curve is called a helix. z(t) = ej2πfct is a complex waveform
that cannot be viewed on an 2-D oscilloscope screen as a real voltage versus time, and cannot be
carried over a wire or transmission line or radiated into space via an antenna. However complex
functions of time z(t) are very useful for representing complex communications signals in software.

The end view of the helix (projection on the real-imag plane) shows the circle. The bottom (or
top) view (projection on the real-time plane) of the helix shows the real part of the helix(a cosine
wave) and the side view (projection on the imag-time plane) of the helix shows the imaginary part
of the helix (a sine wave). Either the real or the imaginary parts are real waveforms that can be
viewed on an oscilloscope. The end view is what would be seen on an x-y oscilloscope with the real
and imaginary signals connected to the x and y inputs of the oscilloscope respectively. Since the
cosine and sine wave are 90 degrees out of phase, the x-y plot is a circle.

The helix represents the carrier wave with constant amplitude and phase. In the next section we
see what happens when the amplitude and phase are not constant.

In this figure, the helix arises from a counter-clockwise rotation as time increases. The positive
complex exponential ej2πfctis defined to have a positive frequency.

We can visualize the negative complex exponential e−j2πfct as a helix in the opposite direction.
The helix arises from a clockwise rotation as time increases. The negative complex exponential
e−j2πfctis defined to have a negative frequency.
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Figure 1.2: Helix with constant frequency, amplitude and phase.
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The sum of the two complex exponentials c(t) = ej2πfct+e−j2πfct

2 (helixes in opposite directions)
is a cosine wave on the real-time plane, and zero in the imag-time plane.

We can also write c(t) = [c+(t) + c−(t)]/2 where c+(t) = ej2πfct and c−(t) = e−j2πfct. This
notation shows explicitly that the real carrier wave c(t) = cos(2πfct) is made up of a positive
frequency component plus a negative frequency component.

We can also write

c+(t) = ej2πfct = cos2πfct+ jsin2πfct (1.3)

c−(t) = e−j2πfct = cos2πfct− jsin2πfct (1.4)

c(t) = [c+(t) + c−(t)]/2 = cos2πfct (1.5)

It is mathematically equivalent to write the real carrier wave as

c(t) = Re{c+(t)} = Re{e−j2πfct} = cos2πfct. (1.6)

This notation is commonly used, but the disadvantage is that this notation does not clearly show
how the carrier wave is made up of positive and negative frequency components. Obtaining the
real carrier wave by taking the real part implies that something (the imaginary part) is deleted. It
is more clear and transparent to obtain the real carrier wave by adding the positive and negative
frequency components.

This completes the discussion of the carrier wave.

1.1.2 Modulated carrier wave with time-varying amplitude and phase

The communications signal s(t) is a modified (or modulated) carrier wave and has 3 main attributes:
frequency, amplitude and phase. We wish to find a mathematical way to describe s(t).

We will again use Euler’s equation ejθ = cosθ + jsinθ and also cosθ = ejθ+e−jθ

2 as a starting
point.

Recall the carrier wave with positive and negative frequencies is written c(t) = ej2πfct+e−j2πfct.
The carrier wave may also be written in a more general form

c(t) =
a(t)ejθ(t) + a(t)e−jθ(t)

2
= a(t) cos θ(t)

(1.7)

which is valid only if a(t) = Ac = constant and θ(t) = 2πfct.

To write the communications signal s(t) in which the amplitude, frequency and/or phase are
modified to carry a message, we modify the carrier wave by changing its amplitude and phase.

s(t) =
a(t)ejθ(t) + a(t)e−jθ(t)

2
= a(t) cos θ(t)

(1.8)
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where a(t) represents the amplitude of the signal after modulation and θ(t) is the phase of the
carrier wave. The message is contained within a(t) and θ(t) in a manner to be described later. The
message may be analog or digital. Note that if there is no message, then a(t) = Ac = constant and
θ(t) = 2πfct.

Often the general form of a radio signal (or any communications signal) is written as the real
part of a positive complex exponential

s(t) = Re{a(t)ejθ(t)} = a(t)cosθ(t) (1.9)

This is mathematically identical to taking the projection of the helix in the figure above.

This method of writing s(t) by taking the real part of a complex signal appears in many textbooks
and articles, but is potentially confusing, since it appears that something (the imaginary part) is
being removed from the positive complex exponential and then the mystery is what happened to
that imaginary part and why we don’t need it anymore. Instead, it may be better to think of adding
the negative complex exponential to the positive complex exponential (adding the two helixes) to
get the same result, and noticing that the imaginary part is cancelled out by the addition.

Exercise: write this out in detail.

Answer :

s(t) =
a(t)ejθ(t) + a(t)e−jθ(t)

2

=
a(t) cos θ(t)

2
+ j

a(t) sin θ(t)

2
+
a(t) cos θ(t)

2
− j a(t) sin θ(t)

2
= a(t) cos θ(t)

(1.10)

Note the scaling factor of 2 appears here. This factor may be important in some circumstances
where we need to know the signal amplitude and not so important in others where the signal
amplitude would be changed by gain or attenuation stages in the system.

Note that the instantaneous frequency fi(T ) of the signal is related to the phase θ(t) via

fi(T ) =
1

2π

dθ(t)

dt
(1.11)

For the positive exponential, the frequency is positive and visa versa.

If dθ = 2π and dt = 1 second, then the frequency is one cycle per second or 1 Hz. Thus 2π
radians in one second is one cycle per second or 1 Hz. One cycle per second is one cycle of a cos or
sin wave per second.

In the special case where there is no modulation applied to the carrier signal (ie: no message
sent), then we say the carrier wave is “unmodulated” and we write s(t) = c(t) is a carrier wave
oscillating at a frequency of fc and scaled by a constant carrier amplitude coefficient a(t) = Ac.

In this special case, the amplitude a(t) = Ac is a constant, and the phase θ(t) increases linearly
with time such that θ(t) = 2πfct.
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The instantaneous frequency is exactly the carrier frequency (exercise)

fi(T ) =
1

2π

dθ(t)

dt
=

1

2π

d2πfct

dt
=

1

2π
2πfc = fc

as expected.

In this case, we write a(t) = Ac (constant independent of time), θ(t) = 2πfct (linear increase of
phase with time, 2π radians every 1/fc seconds.

Therefore c(t) = Accos(2πfct) = Accos(ωt).

As mentioned in the previous section, this signal is called the carrier wave c(t) and can also be
visualized as a phasor with angular frequency ωc = 2πfc and with period T = 1/fc.

In general, when a message is sent and the carrier wave is modulated, the amplitude a(t) of the
carrier wave may be time varying, and the phase of the carrier θ(t) may have a time varying phase
component φ(t) that is added to the linear phase 2πfct, thus

s(t) = Re{a(t)ejθ(t)} = a(t)cosθ(t)

θ(t) = 2πfct+ φ(t)

s(t) = a(t)cos(2πfct+ φ(t))

(1.12)

The radio signal s(t) is a cosine wave at frequency fc with time-varying amplitude a(t) and phase
φ(t). It is useful to write the radio signal as the real part of a complex waveform or (equivalently) as
the sum of a positive frequency complex waveform s+(t) and a negative frequency complex waveform
s−(t).

s(t) = Re{a(t)ejφ(t)ej2πfct}

=
a(t)ejφ(t)ej2πfct

2
+
a(t)e−jφ(t)e−j2πfct

2

=
s+(t) + s−(t)

2

(1.13)

where

s+(t) =
a(t)

2
ej[2πfct+φ(t)]

=
a(t)

2
cos[2πfct+ φ(t)] + j

a(t)

2
sin[2πfct+ φ(t)]

(1.14)

s−(t) =
a(t)

2
e−j[2πfct+φ(t)]

=
a(t)

2
cos[2πfct+ φ(t)]− j a(t)

2
sin[2πfct+ φ(t)]

(1.15)

When we add the positive and negative frequency signals, the imaginary parts cancel out to yield
the real signal
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s(t) =
s+(t) + s−(t)

2
= a(t)cos(2πfct+ φ(t)) (1.16)

In the equations above, the complex exponentials are written in polar form showing amplitude
and phase. The radio signal may also be written

s(t) = Re{s+(t)} = Re{s−(t)}, (1.17)

where the positive frequency signal s+(t) = sa(t) is also called the analytic signal.

There is also a negative frequency analytic signal s−(t) but this definition is rarely used. However,
the best way to think is that the real signal

s(t) = [s+(t) + s−(t)]/2 (1.18)

is the sum of the positive and negative frequency signal, even though it is mathematically equivalent
to s(t) = Re{s+(t)}.

The analytic representation of a sinusoid is obtained by expressing it in terms of complex-
exponentials, discarding the negative frequency component, and doubling the positive frequency
component. Thus if

s(t) = a(t)cosθ(t)

= a(t)ejθ(t)/2 + a(t)e−jθ(t)/2
(1.19)

then s+(t) = a(t)ejθ(t) where θ(t) = 2πfct+ φ(t).

1.1.3 Complex envelope

We define the complex envelope of the communications signal to be s̃(t) = a(t)ejφ(t) The complex
conjugate of the complex envelope is a(t)e−jφ(t).

The communications signal is then written

s(t) = Re{s̃(t)ej2πfct}
= a(t) cos[2πfct+ φ(t)]

=
s+(t) + s−(t)

2

=
a(t)

2
ejφ(t)ej2πfct +

a(t)

2
e−jφ(t)e−j2πfct

s+(t) = s̃(t)ej2πfct

s−(t) = s̃∗(t)e−j2πfct

(1.20)

For the negative frequency component s−(t) we use the complex conjugate of the complex envelope
a(t)e−jφ(t).

To encode a message m(t) on the carrier wave we vary a(t) and/or φ(t) in step with the message
m(t). Thus a(t), φ(t) are specified as a function of the message m(t). These functions will be specified
later when we discuss specific modulation types.
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We can write the radio signal in a form where the complex envelope is separated into its real
and imaginary parts s̃(t) = a(t)ejφ(t) = I(t) + jQ(t)

Exercise: Write a(t) and φ(t) as a function of I(t), Q(t).

Answer : Using the identity

cos(A+B) = cosA cosB − sinA sinB

the general radio signal

s(t) = a(t)cos(2πfct+ φ(t)) = Re{a(t)ejφ(t)ej2πfct}

may also be written

s(t) = a(t)cos2πfctcosφ(t)− a(t)sin2πfctsinφ(t)

= I(t)cos2πfct−Q(t)sin2πfct
(1.21)

where

I(t) = a(t)cosφ(t) = Re{a(t)ejφ(t)}
Q(t) = a(t)sinφ(t) = Im{a(t)ejφ(t)}

(1.22)

are called the “in-phase” and “quadrature” components, respectively, and thus

I(t) + jQ(t) = a(t)ejφ(t).

Thus we can write

s(t) = Re{a(t)ejφ(t)ej2πfct}
= Re{[I(t) + jQ(t)][cos2πfct+ jsin2πfct]}
= I(t)cos2πfct−Q(t)sin2πfct

= a(t)cos(2πfct+ φ(t))

(1.23)

The general radio signal s(t) must be a real signal that we can view on an oscilloscope.

We can write s(t) as the real part of a complex signal or the sum of a positive complex exponential
and a negative complex exponential.

From the above equation, we see that s(t) can be described as either

1. a cosine wave with amplitude a(t) ≥ 0 and phase φ(t), or

2. the sum of a cosine wave with amplitude I(t) and a sine wave with amplitude Q(t) where
I(t), Q(t) can be greater or less than zero.

In both cases, the message is a two-dimensional (complex) signal represented using either a(t), φ(t)
(polar form) or I(t), Q(t) (rectangular form). In the figure, M(t) = a(t).

I(t), Q(t) are functions of the message signal(s), where the exact function depends on the mod-
ulation type. A simple example is to consider the message signal to be a stereo (2-channel) music
signal written as mL(t),mR(t) and choose

mL(t) = I(t),mR(t) = Q(t)
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a(t)

Q(t) = a(t)sin
(
φ(t)

)

I(t) = a(t)cos
(
φ(t)

)
φ(t)

a(t)6 φ(t)

(
I(t), Q(t)

)

I (real)

Q (imaginary)

Figure 1.3: Polar and rectangular coordinates

I(t) + jQ(t) = a(t)ejφ(t) = s̃(t) = mL(t) + jmR(t)

is the so-called complex baseband signal that is a function of the message. We previously also called
this the complex envelope. For a stereo music signal, the complex baseband signal is mL(t)+jmR(t).
The radio signal s(t) is the so-called real passband signal that contains the message modulated onto
the carrier wave at frequency fc.

The complex baseband signal represents the time varying information represented by a(t), φ(t)
which is transported by a carrier wave from one point to another. The complex baseband signal
s̃(t) = I(t) + jQ(t) = a(t)ejφ(t) can also be represented as a 3-D waveform with projection I(t) onto
the real axis and projection Q(t) onto the imaginary axis

For example, if the amplitude is constant and the phase has only two possible values −π/4 and −
3π/4 to represent a to represent a 101010 . . . data sequence, then the complex baseband signal
appears like a bipolar square wave, and the projections I(t), Q(t) are also square waves. In a future
chapter, we will recognize this waveform as Phase Shift Keying (PSK).

In another example, if the amplitude is constant and the phase is varied in a sinusoidal manner
φ(t) = βsin2πfmt at some frequency fm to represent a 101010 . . . data sequence (as will be seen
in a later chapter), then the 3-D waveform appears as in the figure below. In this example, the
helix rotates in one direction, slows down and then rotates in the opposite direction, following
the sinusoidal variation in phase. The amount of rotation in each direction depends on β. The
projections I(t), Q(t) are periodic patterns which is not easy to interpret without also seeing the
3-D helix. In a future chapter, we will recognize this waveform as Frequency Shift Keying (FSK).

In the special case where I,Q are both constants then s(t) is the sum of a cos wave and a sin
wave with different amplitudes, which is a cosine wave with constant amplitude and phase. The
figure below shows the radio frequency (RF) signal

s(t) = Icos2πfct−Qsin2πfct = acos2πfct+ φ
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Figure 1.4: complex baseband phase shift keying with constant a(t) and two values for φ(t)
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Figure 1.5: Complex baseband frequency-shift keying with constant a(t) and sinusoidal φ(t)
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Figure 1.6: IQ projections for I,Q, a, φ constant independent of time

where both a, φ are functions of I,Q. The in-phase component Icos2πfct and the quadrature
component Qsinπfct are also cosine waves at frequency fc with constant amplitude and phase.

Exercise: write an expression for both a, φ as a function of I,Q.

1.1.4 Summary

A radio (or other communications) signal may be made up of a cosine wave at a carrier frequency
fc with time varying amplitude and phase. The signal may be written as a real passband signal

s(t) = a(t)cos(2πfct+ φ(t)))

where the message is contained in a(t), φ(t). The signal may also be written in complex baseband
form as s̃(t) = I(t) + jQ(t) = a(t)ejφ(t)and viewed in the complex plane. The complex baseband
signal contains the amplitude and phase only (i.e. the message information) and does not explicitly
include the carrier frequency fc. The real passband signal may be obtained from the complex
baseband signal as

s(t) = Re{s̃(t)ej2πfct} = a(t) cos[2πfct+ φ(t)]

.

The real passband signal is equivalent to the sum of the positive and negative complex passband
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signals

s(t) =
s+(t) + s−(t)

2

=
a(t)

2
ejφ(t)ej2πfct +

a(t)

2
e−jφ(t)e−j2πfct

s+(t) = s̃(t)ej2πfct

s−(t) = s̃∗(t)e−j2πfct

(1.24)

s+(t) is also called the analytic signal.

A description of message types (analog and digital) and how they are contained in a(t), φ(t)
is explained in detail a later section. A brief example: consider a digital message consisting of
alternating 101010 bits. We can choose a modulation scheme as follows: assign φ(t) = 0 during a 0
bit and φ(t) = π during a 1 bit and keep a(t) constant for both 1 and 0 bits. We could also make
different choices.

Exercise: sketch a graph of the passband signal waveform with this example modulation scheme.

Exercise: invent another (different) modulation scheme where we assign a(t), φ(t) as a function of
the message, and sketch the passband signal waveform.

Exercise: invent a modulation scheme where we assign I(t), Q(t) as a function of the message, and
sketch the passband signal waveform.

1.1.5 Frequency shifting

From the definition of a (real) communications signal with information contained in a(t), φ(t),

s(t) =
s+(t) + s−(t)

2

=
a(t)

2
ejφ(t)ej2πfct +

a(t)

2
e−jφ(t)e−j2πfct

= a(t) cos[2πfct+ φ(t)]

(1.25)

we observe that it consists of the complex envelope multiplied by a positive complex exponential
plus the complex conjugate of the complex envelope multiplied by a negative complex exponential.
We now consider communications signals in the frequency domain.

First recall the Fourier transform. Fourier analysis shows that any complex waveform can be re-
solved into sinusoidal waveforms of a fundamental frequency and a number of harmonic frequencies.
The spectrum analyzer effectively performs the Fourier integral:

S(f) =

∫ ∞

t=−∞
s(t)e−j2πftdt

=

∫ ∞

t=−∞
s(t)cos(2πft)dt− j

∫ ∞

t=−∞
s(t)sin(2πft)dt

(1.26)

The integral finds the frequency components in s(t) by correlating s(t) with cosine and sine waves
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at each frequency f . For a particular frequency f = fc

s(t) = cos2πfct (1.27)

and

S(f) =

∫ ∞

t=−∞
cos(2πfct)cos(2πft)dt

S(f = fc) =

∫ ∞

t=−∞
0.5[1 + cos(4πfct)]dt

= 0.5

∫ ∞

t=−∞
dt+ 0.5

∫ ∞

t=−∞
cos(4πfct)dt

(1.28)

The cosine waves are in phase for all time, the product of the two cosine waves contains DC,
thus the integral integrates DC over all time, resulting in infinity (delta functions) at f = ±fc. For
all other frequencies f 6= fc the cosine waves drift in and out of phase over time, there is no DC
component, and the integral is zero. Thus for s(t) = cos(2πfct) we can write:

S(f) =

∫ ∞

t=−∞
cos(2πfct)cos(2πft)dt

= [δ(f − fc) + δ(f + fc)]/2

(1.29)

Exercise: repeat the above calculation for s(t) = cos(2πfct+ φ) where φ = π/4 = constant.

The Fourier transform has frequency-shifting properties that will be used often in everything
that follows. The properties are

s(t)⇔ S(f)

s(t)ej2πf1t ⇔ S(f − f1)

s(t)e−j2πf1t ⇔ S(f + f1)

To apply these properties, recall the definitions

s(t) = Re{s̃(t)ej2πfct}
= a(t) cos[2πfct+ φ(t)]

= s+(t) + s−(t)

= a(t)ejφ(t)ej2πfct + a(t)e−jφ(t)e−j2πfct

s+(t) = s̃(t)ej2πfct

s−(t) = s̃∗(t)e−j2πfct

2s(t) = s+(t) + s−(t)

= a(t)ejφ(t)ej2πfct + a(t)e−jφ(t)e−j2πfct

= 2a(t) cos[2πfct+ φ(t)]

s(t) = s̃(t)ej2πfct + s̃∗(t)e−j2πfct
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Transforming these definitions into the frequency domain using the shifting properties shown below

2S(f) = S+(f) + S−(f)

= S̃(f − fc) + S̃∗(−(f + fc))

Thus we see that the real communications signal is made up of the complex baseband signal
(containing the message information) shifted by the carrier frequency. The shape of the spectrum of
the complex baseband signal S̃(f) is the same as the shape of the spectrum of the positive frequency
signal S+(f), and the shape of the spectrum of the conjugate of the complex baseband signal S̃∗(f)
is the same as the shape of the spectrum of the negative frequency signal S−(f)

The Fourier transform of a real signal s(t) will always be symmetrical around zero Hz, i.e. the
shape of the Fourier transform (the spectrum) in the negative frequency range will be the mirror
image of the Fourier transform (spectrum) in the positive frequency range.

The Fourier transform of a complex signal such as s+(t) or s̃(t) will have an asymmetrical spec-
trum, i.e the spectrum at negative frequencies will not be the mirror image of the spectrum at
positive frequencies. For s+(t) the spectrum is zero at negative frequencies but not zero at positive
frequencies.

A review of how the shifting properties arise is given below, remembering that

δ(x) =

{
∞ x = 0

0 x 6= 0
(1.30)
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S(f) = ∫∞t=−∞ s(t)e−j2πftdt

s(t)⇔ S(f)

δ(t)⇔ 1

1⇔ δ(f)

ej2πf1t ⇔ δ(f − f1)

e−j2πf1t ⇔ δ(f + f1)

Proof

S(f) = ∫∞t=−∞ s(t)e−j2πftdt

= ∫∞t=−∞ e−j2πf1te−j2πf1tdt

= ∫∞t=−∞ e−j2π(f+f1)tdt = δ(f + f1)

s(t)ej2πf1t ⇔ S(f)⊗ δ(f − f1) = S(f − f1)

s(t)e−j2πf1t ⇔ S(f)⊗ δ(f + f1) = S(f + f1)

Proof

S(f)⊗H(f) = ∫∞α=−∞ S(α)H(f − α)dα

S(f)⊗ δ(f) = ∫∞α=−∞ S(α)δ(f − α)dα

= S(f)

S(f)⊗ δ(f − f1) = ∫∞α=−∞ S(α)δ(f − f1 − α)dα

= S(f − f1)

s+(t)↔ S+(f)

s∗+(t)↔ S∗+(−f)

Proof for specific example

s+(t) = aeφej2πfct

S+(f) = aeφδ(f − fc)
s∗+(t) = ae−φe−j2πfct

= s−(t)

S∗+(−f) = ae−φδ(−f − fc)
= S−(f)

then

s∗+(t)↔ S∗+(−f)

ae−φe−j2πfct ↔ ae−φδ(−f − fc)
↔ ae−φδ(f + fc)

since

δ(+f + fc) = δ(−f − fc) =∞, f = −fc (1.31)



CHAPTER 1. IQ SIGNALS 24

For a software radio system where the signal is digitized (sampled) by an analog-to-digital con-
verter (ADC) at a sampling rate fs = 1/Ts, the Fourier transform is done using the Discrete Fourier
Transform (DFT) algorithm on a block of N samples. The DFT is most often implemented using
the Fast Fourier transform (FFT) algorithm.

Recall the discrete Fourier transform is defined as a Fourier transform operating on a sampled
periodic signal with period N samples. The time domain signal s(t) is sampled at a sampling rate
fs = 1/Ts to make samples sn = s(t = nTs), where Ts is the time resolution. After the discrete
Fourier transform is done on a block of N samples sn, 0 ≤ n ≤ N−1 to obtain the frequency domain
signal S(f), the result is a block of N samples Sk, 0 ≤ k ≤ N − 1, where Sk = S(f = kf0) is the
frequency resolution f0 = fs/N . The DFT is written as follows:

S(f = kf0) = Sk

= ∫T0=nTs
t=0 s(t)e−j2πftdt|t=nTs,f=kf0

=
N−1∑

n=0

s(nTs)e
−j2πkf0nTs

=

N−1∑

n=0

sne
−j2πkn/N

(1.32)

where Tsf0 = 1/N and N is the number of samples in both the time domain and frequency domain.
This calculation may be done in Matlab Sk = fft(sn) where the blocks of N samples sn, Sk are
Matlab vectors.

For a software radio system receiving real passband signals in the 2.4 GHz range (e.g. WiFi)
with sampling rate of 100 MHz, the “complex baseband” signal may contain up to communications
signals in a 100 MHz bandwidth, spaced by 5 MHz. Similarly for a software radio system receiving
real passband signals in the 88–108 MHz FM broadcast range with sampling rate of 20 MHz, the
“complex baseband” signal will contain many FM broadcast signals in the 20 MHz bandwidth from
88–108 MHz.

1.1.6 Analytic signals

Recall the definitions

2s(t) = s+(t) + s−(t)

= a(t)ejφ(t)ej2πfct + a(t)e−jφ(t)e−j2πfct

= 2a(t) cos[2πfct+ φ(t)]

s+(t) = s̃(t)ej2πfct

s−(t) = s̃∗(t)e−j2πfct

s(t) = s̃(t)ej2πfct + s̃∗(t)e−j2πfct

s−(t) = s∗+(t)

Transforming these definitions into the frequency domain

2S(f) = S+(f) + S−(f) = S̃(f − fc) + S̃∗(−(f + fc))
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Note that
S−(f) = S∗+(−f)

and for a real-valued signal s(t)
S(−f) = S(f)∗

The analytic signal Sa(f) is the same as S+(f) as defined below

Sa(f) = 2S(f), f > 0 and 0, f < 0

Sa(f) = S+(f)

= 2u(f)S(f)

= S(f) + sgn(f)S(f)

(1.33)

where u(f) = 1 + sgn(f) is the Heaviside step function

u(f) =

{
1 f > 0

0 f < 0
(1.34)

and sgn(f) is the sign function

sgn(f) =

{
1 f > 0

−1 f < 0
(1.35)

In a future section 2.3, we will see how to represent Sa(f) = S+(f) in the time domain using the
idea of a Hilbert transform.

Exercise: write the frequency domain definition of the analytic signal for the special case where
a(t) = 1, φ(t) = 0.

1.2 Block diagrams for real passband and complex baseband
signals

Learning objectives

In this section, we show block diagrams that implement the equations from the previous section.

Overview of this section 1.2

The implementation of the equations in section 1.1 may be done in software or hardware.

In the case of software, the complex signal equations are implemented directly in some language
such as C++ and Python (for GNURadio) or in Matlab, Mathematica or similar. The signals
must be represented by discrete-time samples, sampled at some sampling rate fs = 1/Ts such that
s(t)|t=nTs = s(t = nTs) = sn for real samples or s̃(t)|t=nTs = s̃(t = nTs) = s̃n for complex samples.
The samples are stored in digital memory as a vector and manipulated in software.
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In the case of hardware, complex signals cannot be implemented directly from the equations since
a complex signal cannot be represented by a real current that flows through a wire. The complex
signal equations must be converted to real signals (voltage) that can make currents flow on wires.

Real signals can be implemented in either hardware or software.

The equations are used to implement a communications system that includes a

• transmitter (modulator) that modulates the information-bearing signal (message) onto a car-
rier to create a communications signal

• channel that may be a real analog thing such as optical fiber, copper wire, transmission line
or antenna that radiates the signal into free space (wireless) or a simulated channel that is
implemented in software. A simulated channel may be complex or real. The channel has a
path loss L0 that attenuates the communications signal as a result of the distance between
transmitter and receiver. The channel may also include a time-varying filter that represents
distortion caused by the physical nature of the channel.

• receiver (demodulator) that extracts the message from the communications signal

In what follows, we show block diagrams of the transmitter and receiver.

1.2.1 Radio transmitter (modulator)

Complex signal implementation - complex passband

The radio transmitter (modulator) may be described in complex form with a complex multiplication
of the complex baseband message I(t) + jQ(t) with cos 2πfct+ j sin 2πfct to yield a complex signal

s̃(t) = a(t)ejφ(t)ej2πfct

= [I(t) + jQ(t)][cos 2πfct+ j sin 2πfct]
(1.36)

The complex message I(t), Q(t) is multiplied by the complex carrier wave ej2πfct = cos 2πfct +
j sin 2πfct to create a complex passband signal s+(t)

The complex signal implementation diagram in fig. 1.7 assumes the blocks are processing sampled
digital signals in software.
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If the system uses a real channel, then the radio signal s(t) is the real part of this complex
multiplication

s(t) = I(t) cos 2πfct−Q(t) sin 2πfct (1.37)

If we need a real signal to transmit over a wire to an antennas, then we need a digital-to-analog
converter (DAC) block after the Re block.

If we are building a computer simulation of the radio transmitter then the Re block and DAC
may be omitted, and the output is the complex passband signal s+(t)

Re
D

A
s(t)

I(t) + jQ(t)

ej2πfct
Real

Complex

Figure 1.7: Complex implementation transmitter block diagram

Real signal implementation - real passband

In fig. 1.8 below, we show the following blocks

1. the D/A block is a digital to analog converter,

2. the mixer is a multiplier,

3. the oscillators output a cos wave for the I stream and a sin wave for the Q stream,

4. the combiner is an adder.
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I

Q

D
A

D
A

s(t)
cos(2πf1t)

sin(2πf1t)

Figure 1.8: Real implementation transmitter block diagram

With the blocks defined as above, the figure shows a radio transmitter (or modulator) that
produces the radio waveform s(t) = I(t) cos 2πfct−Q(t) sin 2πfct from the message signals I(t), Q(t),
where in this example, fc = f1.

In the figure, the blocks process analog signals. However, if the D/As are omitted, the remaining
blocks process digital signals, using software such as GNURadio or Matlab Simulink.

1.2.2 Radio receiver (demodulator)

If the entire communication system including channel is implemented by computer simulation, then
the complex passband signal s+(t) is attenuated by the channel represented by a scaling factor 1/L0.

If the channel is real (wired or wireless), then the real passband signal s(t) is transmitted over a
distance via some real channel (wired or wireless), attenuated by the path loss L0 and picked up by
a receiver in the form r(t) = s(t)/L0

The receiver’s task is to recover the message signals I(t), Q(t) from the signal r(t). This can be
done using the receivers shown below.

Complex signal implementation

The radio receiver (demodulator) may be described in complex form with a complex multiplication
of the complex passband signal r+(t) = L−1

0 s+(t) = a(t)ejφ(t)ej2πfct/L0.
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We write the received signal in complex passband form

r+(t) = L−1
0 s+(t)

= L−1
0 a(t)ejφ(t)ej2πfct

= L−1
0 [I(t) + jQ(t)][cos 2πfct+ j sin 2πfct]

(1.38)

The receiver demodulates the complex radio signal by multiplying r+(t) by the complex local
oscillator e−j2πfct = cos 2πfct− j sin 2πfct to yield

r+(t)e−j2πfct = [L−1
0 a(t)ejφ(t)ej2πfct]e−j2πfct

= L−1
0 a(t)ejφ(t)

= L−1
0 [I(t) + jQ(t)]

(1.39)

r+(t)

e−j2πfct

I(t) + jQ(t)

Figure 1.9: Complex baseband receiver block diagram

Real signal implementation

Recall the real passband signal

s(t) = Re{s+(t)}
= Re{a(t)ejφ(t)ej2πfct}
= a(t) cos[2πfct+ φ(t)

which is the real part of the complex passband signal.

The block diagram in fig. 1.10 is the dual of the one in fig. 1.8. In this receiver, the input signal
and all processing is analog, and I(t), Q(t) are digitized by an analog-to-digital converter (A/D or
ADC).
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s(t)

A
D

A
D

I

Q

cos(2πf1t)

sin(2πf1t)

Figure 1.10: Radio receiver block diagram

In Figure 1.10, the D/A blocks should be A/D or ADC.

A more complete drawing of the receiver adds some practical components

In this figure, we have added: RX filters needed to filter out undesired signals on nearby fre-
quencies, a Low Noise Amplifier (LNA) to amplify r(t) that is typically in the microvolt range to
a level in the volt range suitable for ADC, Automatic Gain Control (AGC) to adjust the gain to
compensate for variations in the level r(t) and low pass filters (LPF) before the ADC.

To see how this receiver works, we calculate the signals x(t), y(t)at the two ADC inputs, and
find that they are equal to I(t), Q(t)
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Exercise: prove this. Several trigonometric identities will be needed:

cosα cosβ = [cos(α− β) + cos(α+ β)]/2

sinα cosβ = [sin(α− β) + sin(α+ β)]/2

sinα sinβ = [cos(α− β)− cos(α+ β)]/2

Note that double frequency terms (cosine waves at 2fc) arise from the calculations and are filtered
out by the low pass filter (LPF).

1.2.3 Summary

We have created a communication system with message signals I(t), Q(t) that are modulated onto
a carrier wave at frequency fc to create the radio signal

s(t) = I(t) cos 2πfct−Q(t) sin 2πfct.

s(t) travels over a distance via a channel with path loss Lo.

The receiver picks up the real passband signal r(t) = s(t)/L0 and recovers the messages I(t), Q(t).

When the communications system is simulated in software, we can implement it in complex
passband r+(t) = s+(t)/L0

Any signal s(t) can be written as a carrier wave at frequency fc with time-varying amplitude
and phase, i.e.

s(t) = a(t) cos[2πfct+ φ(t)]

= Re{a(t)ejφ(t)ej2πfct}
= Re{[I(t) + jQ(t)][cos 2πfct+ j sin 2πfct]}
= I(t) cos 2πfct−Q(t) sin 2πfct

= a(t) cos[2πfct+ φ(t)]

(1.40)

where

I(t) = a(t) cosφ(t) = Re{a(t)ejφ(t)}
Q(t) = a(t) sinφ(t) = Im{a(t)ejφ(t)}

(1.41)

and
s̃(t) = I(t) + jQ(t) = a(t)ejφ(t) (1.42)
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is called the complex envelope of the signal and also called the complex baseband signal. The
complex envelope contains two real waveforms I(t), Q(t) that contain the information or message.

The real passband signal s(t) is obtained by multiplying the complex envelope s̃(t) with the
complex positive frequency carrier wave

c+(t) = ej2πfct = cos 2πfct+ j sin 2πfct (1.43)

to yield
s+(t) = s̃(t)ej2πfct (1.44)

and taking the real part to yield
s(t) = Re{s̃(t)ej2πfct} (1.45)

Exercise: obtain the real passband signal from s̃(t) and c+(t) by adding the negative frequency
carrier wave

c−(t) = e−j2πfct = cos 2πfct− j sin 2πfct

without taking the real part of anything.

1.2.4 Review

Here we review the general I-Q receiver configuration that may be implemented for all types of
signals using slightly different notation. Every type of signal consists of a standard configuration
coupled with a “map” that is specific to the transmission type.

s(t) = a(t) cos[2πfct+ ψ(t)]

= a(t)[cos(2πfct) cosψ(t)− sin(2πfct) sinψ(t)]

= a(t) cosψ(t)cos2πfct− a(t) sinψ(t) sin 2πfct

= vi(t)cos2πfct− vq(t) sin 2πfct

(1.46)

where a(t) is the amplitude and ψ(t) is the phase. The coefficients of the carrier waves in the
transmitter are referred to as vi(t) and vq(t) respectively, where

vi(t) = a(t) cosψ(t)

vq(t) = a(t) sinψ(t)
(1.47)

These signals are formed by the map that converts the message m(t) into vi(t), vq(t) and used to
create s(t) at the IQ transmitter.

s(t) = vi(t) cos(2πfct)− vq(t) sin(2πfct) (1.48)

The exact form of the map depends on the particular modulation scheme chosen, as will be discussed
in later chapters.
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Figure 1.11: General IQ Transmitter

The IQ Receiver multiplies the incoming signal s(t) by two versions of the carrier wave functions:
cos(2πfct) and the 90 degree phase-shifted version sin(2πfct).

Figure 1.12: General IQ Receiver

Again, the form of the map that converts vi(t), vq(t) to the message m(t) depends on the partic-
ular modulation scheme chosen, as will be discussed in later chapters.

1.2.5 Messages

When we study modulation, we often choose a simple analog message m(t) = Am cos(2πfmt), where
fm is the modulation/message frequency and is usually on the order of Hz or kHz. We can also
choose a simple digital message with an 10101010... alternating bit sequence at a bit rate 2fm. For
this digital message, the 1 bits are the positive half of a cosine wave at frequency fm and the 0 bits
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are the negative half of the same cosine wave. This message is called a single frequency or single
tone message. In practice, we wish to transmit a more interesting message that contains more than
a single tone at a single frequency.

Analog message (voice or music)

A general analog message (voice or music) would be represented by a sum of cosine waves with
different amplitudes and phases Ai, ψi at each frequency fi,

m(t) =
∑

i

Ai(t) cos(2πfit+ ψi(t)). (1.49)

We often assume that m(t) is divided into frames of length T in the range 5-20 milliseconds. The
frames may simply follow one after the other without overlap. In each frame the values of Ai, fi, φi
will in general be different.

Frames may also be windowed and overlapped. In the figure, we show each frame of length T as
being N samples long, where N is typically a power of 2 in the range 256 to 2048 for audio signals
sampled at an audio rate of say N/T = 48 000 Hz. The figure also shows the window shape (raised
cosine) and the overlap (N/2 samples).

Exercise: what is the length in milliseconds of an N=256 sample frame?

Figure 1.13: Frame length, N

During each frame k at time t = kT , we assume Ai(t) = Ai,k, ψi(t) = ψi,k are constant, so we
can write

m(t = kT ) =
∑

i

Ai,k cos(2πfit+ ψi,k). (1.50)

At the discrete times t = kT , the message is the sum of cosine waves with frequencies fi amplitudes
Ai,k and phases ψi,k that are different for each frame k. For each frame k, the amplitudes Ai,k and
phases ψi,k at the frequencies fi can be obtained from the short-time Fourier transform of m(t).

Digital message, a sequence of bits

An analog message can also represent a digital symbol sequence ak by writing

m(t) =
∑

k

akp(t− kT ) (1.51)

where p(t) is a pulse that spans a finite time period, ak may be binary symbol ±1 (to represent
binary 1 or 0) or multilevel (e.g. ±1,±3 to represent 00, 01, 10, 11) and T is the symbol time.
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We can have two such sequences:

mI(t) =
∑

k

akp(t− kT ) = I(t)

mQ(t) =
∑

k

bkp(t− kT ) = Q(t)
(1.52)

Thus we can write the complex baseband signal as

I(t) + jQ(t) =
∑

k

(ak + jbk)p(t− kT ) (1.53)

where
ck = ak + jbk = rke

jφk (1.54)

is a complex data symbol. If both ak, bk are binary, then ck represents 2 bits of information at each
time t = kT If both ak, bk are multilevel ±1,±3, then ck represents 4 bits of information at each
time t = kT .

The pulse shape p(t) can have shapes other than rectangular, and can be longer than T . Other
pulse shapes are described in a later chapter.

1.3 Analog IQ receiver

Learning objectives

• To describe the operation of a practical software defined radio.

• To describe the implementation of a receiver that receives real analog signals and processes
them both in the analog and digital domain.

• To describe the connection between the block diagram of a software defined radio and the
mathematical description of communications signals

1.3.1 Overview and block diagram

In this section, we apply the I-Q signal theory above to a particular example:
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A block diagram for the Ettus USRP N210 radios used in the ELEC 350 labs is shown in fig. 1.14.
For this receiver, there is an analog daughterboard that is chosen for the particular frequency range
of interest (red and green lines) and a digital motherboard.

the daughterboard receives signals with carrier frequency in the range 50–2200 MHz and generates
analog I-Q outputs that are in the frequency range below 50 MHz and are sampled at 100 MHz.

In fig. 1.14:

• The red blocks and connections represent real passband signals

• the green blocks and connections represent the real and imaginary parts of complex baseband
signals

• The blue blocks and connections represent digital processing in the software defined part of
the radio receiver.

Figure 1.14: Ettus N210 block diagram (www.ettus.com)

Many software defined radios that operate at frequencies above about 100 MHz have an analog
I-Q stage similar to this example ahead of the analog-to-digital converter sampling at 100 MHz. The
red oscillator (c) operates at a frequency fLO called the local oscillator frequency, which is general
is close to but not the same as the carrier frequency fc.

In the next section, we describe the operation of the daughterboard (red and green blocks and
connections).

1.3.2 USRP daughterboard receiver operation

The USRP daughterboard is designed to receive radio frequency (RF) signals at frequencies fc in
the range fLO ± fs/2 MHz, where fLO is the local oscillator (LO) frequency. In this example, we
set fLO to about 100 MHz and fs is the sampling rate of the USRP main board ADCs, set to 100
Msps.

www.ettus.com
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The USRP daughterboard operates by generating two local oscillator (LO) signals at fLO and
mixing (multiplying) it with a desired radio frequency (RF) signal at fc (picked up by the antenna
or fed in by a signal generator) to yield a signal at the difference frequency fb = fc − fLO.

The USRP daughterboard has two local oscillators operating 90 degrees out of phase, cos 2πfLOt
and − sin 2πfLOt and two mixers. Thus there are two receiver outputs that we call I(t) and Q(t)
(see figure above)

The desired RF signal that we wish to receive is written r(t) = a(t) cos[2πfct+ φ(t)].

We assume a(t) = 1, φ(t) = 0 for the moment, so the desired RF signal is simply an unmodulated
carrier wave r(t) = cos 2πfct.

1.3.3 Receiver operation in real notation

In what follows, given this RF signal input we will calculate the two receiver outputs I(t) and Q(t).

To do this, we will use some trigonometric identities

cosα cosβ = [cos(α− β) + cos(α+ β)]/2

sinα cosβ = [sin(α− β) + sin(α+ β)]/2

sinα sinβ = [cos(α− β)− cos(α+ β)]/2

One of the local oscillator signals is written cos 2πfLOt.

The cos mixer multiplies this LO signal with the RF input signal to obtain

cos 2πfct · cos 2πfLOt. (1.55)

Using one of the trigonometric identities, we can write

cos 2πfLOt · cos 2πfct = 0.5 cos 2π(fc + fLO)t+ 0.5 cos 2π(fc − fLO)t (1.56)
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Thus multiplying two sine (or cosine) waves at frequencies fLO and fc results in two new sine
waves: one at the sum frequency fc + fLO and one at the difference frequency fc − fLO.

The signal at the sum frequency fc + fLO is filtered out by analog low pass filters in the USRP
daughterboard.

The signal at the difference frequency fc − fLO is written

I(t) = 0.5 cos 2π(fc − fLO)t = 0.5 cos 2πfbt. (1.57)

I(t) can be sampled by the ADC, provided that fc is close enough to fLO, i.e. the difference is
less than half the sampling rate, |fc − fLO| < fs/2 or fLO − fs/2 < fc < fLO + fs/2

The difference frequency fb = fc − fLO, where |fb| < fs/2.

The USRP daughterboard has two local oscillators operating 90 degrees out of phase, cos 2πfLOt
and − sin 2πfLOt and two mixers. Thus there are two outputs that we call I(t) and Q(t) (see figure
above) where I(t) = 0.5 cos 2π(fc − fLO)t was calculated above.

The second local oscillator signal is written − sin 2πfLOt. The sin mixer multiplies this LO signal
with the RF input signal to obtain

cos 2πfct · (− sin 2πfLOt). (1.58)

We apply a trigonometric identity with α = 2πfLOt, β = 2πfct and write

− sin 2πfLOt · cos 2πfct = −0.5 sin 2π(fc + fLO)t+ 0.5 sin 2π(fc − fLO)t (1.59)

The signal at the difference frequency is written

Q(t) = 0.5 sin 2π(fc − fLO)t = 0.5 sin 2πfbt. (1.60)

If the receiver outputs I(t) = cos 2πfbt and Q(t) = sin2πfbt are displayed on a x-y scope, then
a circle is displayed. If fb < 5 Hz or so, then the dot on the scope can be seen tracing out the circle.
We can write these two receiver output signals I(t) and Q(t) that have time varying amplitude and
phase a(t), φ(t), where in this case

a(t) =
√
I2(t) +Q2(t)

= 1

φ(t) = arctan
Q(t)

I(t)

= arctan
sin 2πfbt

cos 2πfbt

= arctan(tan 2πfbt)

= 2πfbt

r̃(t) = a(t)ejφ(t)

= ej2πfbt

(1.61)

The last equation shows how I(t) and Q(t) can also be represented as one complex signal r̃(t) =
I(t) + jQ(t) = a(t)ejφ(t) as shown in the next section.
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1.3.4 Receiver operation in complex notation

We can calculate the USRP daughterboard receiver output using complex signals as follows.

Recall that the desired RF signal that we wish to receive is written r(t) = a(t) cos[2πfct+ φ(t)]
where for the moment we set the path loss L0 = 1.

We assume a(t) = 1, φ(t) = 0 for the purpose of this section, so the desired RF signal is simply
an unmodulated carrier wave cos 2πfct. In complex notation we write

r(t) = Re{r+(t)} = Re{ej2πfct} = cos2πfct. (1.62)

We can also write r(t) in terms of the positive and negative frequency components.

r(t) = r+(t)/2 + r−(t)/2 (1.63)

In complex notation, we consider only the positive frequency signal input to the receiver. The
complex passband unmodulated RF signal r+(t) = ej2πfct is multiplied by the complex local oscil-
lator

e−j2πfLOt| = cos 2πfLOt− jsin2πfLOt (1.64)

to yield
r+(t)e−j2πfLOt = ej2πfcte−j2πfLOt = ej2πfbt = I(t) + jQ(t) = r̃(t) (1.65)

where the received complex baseband signal is

r̃(t) = I(t) + jQ(t) = ej2πfbt. (1.66)

The diagram in fig. 1.15 below using complex signals performs the same function as the previous
diagram above using real signals. Note that the complex signal diagram does not use the low pass
filters.

r+(t)

e−j2πfct

I(t) + jQ(t)

Figure 1.15: Complex signal receiver block diagram, USRP daughterboard analog IQ receiver in
complex notation, in this diagram fc = fLO
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In summary,

r+(t) = ej2πfct

I(t) = cos 2πfbt

Q(t) = sin 2πfbt

r̃(t) = I(t) + jQ(t)

= cos 2πfbt+ j sin 2πfbt

= ej2πfbt

This is the same result as above, apart from a factor 0.5 arising from the complex notation.

If I(t) and Q(t) are displayed on a x-y scope, a circle is displayed. If fb < 5 Hz or so, then the
dot on the scope can be seen tracing out the circle.

Exercise: Repeat the above analysis in both real and complex notation when the RF input signal is
a general signal a(t) cos[2πfct+ φ(t)] to find I(t) and Q(t) as a function of fb, a(t), φ(t).

Exercise: Repeat the complex notation analysis for a real input signal r(t) = cos 2πfct. Hint: write
r(t) as the sum of two complex exponentials. Some filters may be needed.

1.3.5 Another approach using digital IQ receiver

Figure 1.16 shows an alternative receiver structure where the analog stage has only one cosine
oscillator followed by a low pass filter. In this structure, the single analog oscillator shifts the
received bandwidth down by fLO so that it is centered at 0 Hz. The signals I(t), Q(t) are generated
after the analog-to-digital converter using exactly the same math as shown in section 1.3.3 and 1.3.4.

In the next section, we consider IQ signals in the frequency domain.

1.4 Spectrum Analyzers, analog and digital

While an oscilloscope is used to display electrical signals in an amplitude versus time format, a
spectrum analyzer provides an amplitude squared (power) versus frequency format. fig. 1.17 shows
the two representations for the same signal.

The Fourier analysis introduced in section 1.1.5 shows that any complex waveform can be resolved
into sinusoidal waveforms of a fundamental frequency and a number of harmonic frequencies. The
spectrum analyzer effectively performs the Fourier integral:

S(f) =

∫ ∞

t=−∞
s(t)e−j2πftdt

=

∫ ∞

t=−∞
s(t) cos(2πft)dt− j

∫ ∞

t=−∞
s(t) sin(2πft)dt

(1.67)

The integral finds the frequency components in s(t) by correlating s(t) with cosine and sine waves
at each frequency f . For a particular frequency f = fc, s(t) = cos(2πfct) and

S(fc) = ∫∞−∞ cos(2πfct) cos(2πfct)dt

= ∫∞−∞ 0.5[1 + cos(4πfct)]dt
(1.68)
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Figure 1.16: RTL-SDR block diagram (https://www.rtl-sdr.com/about-rtl-sdr/)

The cosine waves are in phase for all time, the product of the two cosine waves contains DC,
thus the integral integrates DC over all time, resulting in infinity (delta functions) at f = fc. For
all other frequencies f 6= fc the cosine waves drift in and out of phase over time, there is no DC
component, and the integral is zero. Thus for s(t) = cos(2πfct) we can write:

S(f) = ∫∞−∞ cos(2πfct) cos(2πft)dt

= [δ(f − fc) + δ(f + fc)]/2
(1.69)

For a digital spectrum analyzer where the signal is digitized (sampled) by an analog-to-digital
converter (ADC), the Fourier transform is done using the Fast Fourier Transform (FFT) algorithm,
as will be discussed in more detail in the next section.

Figure 1.17: Oscilloscope and Spectrum Analyzer Displays

https://www.rtl-sdr.com/about-rtl-sdr/
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Figure 1.18: Block diagram of spectrum analyzer (http://cp.literature.agilent.com/litweb/
pdf/5952-0292.pdf)

Figure 1.19: Effect of Span on Spectrum Analyzer Display

There is a practical upper limit to the sampling rate of an ADC. Thus analog spectrum analyzers
are used for high frequencies. For an analog spectrum analyzer, frequency scanning is accomplished
by electronically tuning a bandpass filter network across the desired frequency range. In practice, a
sweep generator along with a fixed frequency bandpass filter, rather than tuning the bandpass filter,
as shown in fig. 1.18 (taken from an Agilent app note).

The amplitudes of all the signals in the bandpass area (at each point during the scan) are
measured to provide the amplitude versus frequency display.

It is important to note that in order to detect two signals which are narrowly spaced, the frequency
span of the bandpass filter must be set appropriately. This concept is shown in fig. 1.19. The
frequencies f1, f2 and f3 in the input spectrum are summed into a single peak on the displayed
waveform due to the excessive frequency span. Note that the DC reference shown in this figure is
a characteristic of the spectrum analyzer. It is always present, regardless of whether there is a DC
bias on the input signal.

Unlike an oscilloscope, the amplitude scale on a spectrum analyzer can be set to a logarithmic
scale (for power measurements) as well as a linear scale (for voltage measurements). The logarithmic

http://cp.literature.agilent.com/litweb/pdf/5952-0292.pdf
http://cp.literature.agilent.com/litweb/pdf/5952-0292.pdf
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scale is represented in dBm, or decibels with reference to a milliwatt.

P(dBm) = 10log

(
Pin

1 mW

)
(1.70)

It can then be shown that

P(dBm) = 10log

(
V 2

Z
· 1

1 mW

)
(1.71)

where V is the RMS voltage.

If the load is a standard 50 Ω input,

P(dBm) = 20logV + 10log
1

50× 10−3

= 20logV + 13

So the relationship between input power and input voltage is

P(dBm) = 20logV + 13 (1.72)

This is a handy formula worth remembering.

On the logarithmic dB scale, the power of signals is always positive. It is the magnitude of the
signals above (in reference to) the noise level that is of interest. The analog spectrum analyzer shows
only the square magnitude (or power) of each Fourier component. A digital spectrum analyzer can
show phase as well as amplitude. The block diagram of the digital spectrum analyzer is the same
as the general I-Q receiver, followed by an ADC (analog-to-digital converter), FFT processor and
display.

1.5 Spectrogram or spectral waterfall

1.5.1 Example spectrograms

Radio signals (and other types of one dimensional signals) can be displayed with a spectrogram
that represents the signal simultaneously in the time and frequency domains. A spectrogram has 3
dimensions: time, frequency and amplitude.
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Figure 1.20: Time vs Frequency domain

Often the amplitude is represented by colour, just like a topographical map. The amplitude
is colour coded using a colour map, where (for example) blue is low amplitude, green is medium
amplitude and red is high amplitude A waterfall display is a spectrogram where the time axis is
moving, showing the most recent signal first.

Figure 1.21 shows an example snapshot in time of a spectrogram or moving spectral waterfall
display. The x axis is frequency, the y axis is time (most recent at the top, time increasing down-
wards). On the left of the display, the blue line represents a sine wave at a fixed frequency. The
green blocks represent radio signal modulated with information, and thus occupy a finite non-zero
bandwidth. Note that the radio signals on a given frequency start and stop at different times.

Figure 1.21: Waterfall spectrogram with frequency on x axis, time on y axis, amplitude color coded
to display z axis.

Another example of a waterfall spectrogram is shown in fig. 1.22. In this example, all the signals
are morse code, i.e. sine waves switched on and off. The amplitude is grey scale coded to display
the z axis amplitude, a tunable filter shown in green is used to select desired signal.
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Figure 1.22: Waterfall spectrum of morse code

An example of a combination spectrum and spectral waterfall is shown in fig. 1.23. The spectrum
is the output of a digital spectrum analyzer and is valid in real time. The waterfall shows the history
of the spectrum with frequency on the horizontal axis, time on the vertical axis and amplitude
represented by color. In fig. 1.23, there are two signals present.
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Figure 1.23: Combined spectrum and spectral waterfall

Live real-time spectral waterfalls showing radio signals in real time are available at these links:
http://www.websdr.org/ and http://kiwisdr.com/public/

Algoritm to generate a spectrogram

The waterfall is drawn as follows:

1. Segment the complex baseband time domain signal s̃(t) sampled at a given rate fs samples
per second into frames of a fixed number of samples N , where N is typically a power of two
such as 1024. Each frame is of length T0 = N/fs seconds.

2. Take the short-time Fourier transform of a frame S̃(f) = FFT{s̃(t)} to yield a frame of
N complex samples representing the amplitude and phase versus frequency. The frequency
resolution will be f0 = fs/N Hz.

3. Draw one horizontal line at the top of the spectrogram with the color of each sample chosen
to represent the amplitude. For example, blue for low amplitude and red for high amplitude
and all colors in between.

4. Push all other lines in the spectrogram down by one time unit (one frame time).

5. Repeat from Step 2 for the next segment (frame).

The spectrum for a particular frame is found by computing S̃(f) = FFT{s̃(t)} for the samples of
s̃(t) in that frame. The spectrum extends from −fs/2 to fs/2. Since s̃(t) is complex, the spectrum

http://www.websdr.org/
http://kiwisdr.com/public/
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S̃(f) is not symmetrical around zero, thus the spectrum will have a different shape for positive and
negative frequencies.

The frequency axis zero point is often labeled fLO in the waterfall plot instead of zero, since an
RF signal at exactly fc = fLO will be mixed by the IQ receiver down to fc − fLO = fb = 0 Hz. In
this way, the frequency axis displays signals at their actual RF frequencies within a bandwidth fs
from fLO − fs/2 to fLO + fs/2. Thus the maximum bandwidth of a complex signal sampled at fs
is fs(not fs/2 as for a real signal).

For a real signal sampled at fs the bandwidth is fs/2 and the spectrum is symmetrical about
zero frequency. The spectrum shape at negative frequencies from −fs/2 to 0 will be the mirror
image of the spectrum shape from to fs/2.

The above algorithm is normally refined using frames that are windowed and overlapped (in the
same way as the message frames in section 1.2.5). In the figure, we show each frame of length T0 as
being N samples long, where N is typically a power of 2 in the range 256 to 2048 for audio signals
sampled at an rate equal to the desired bandwidth of the spectrogram display. The figure also shows
the window shape (raised cosine) and the overlap (N/2 samples).

Exercise: what is the length in milliseconds of an N = 256 sample frame?

Figure 1.24: Frame length, N

Live waterfall displays with tunable filter and audio output can be found at http://www.websdr.
org/ and http://kiwisdr.com/public/

Exercise: write the algorithm for creating a spectrogram waterfall showing the signal samples of s̃(t)
and S̃(f) = FFT{s̃(t)} in discrete-time notation where s̃n = s̃(t = nTs), Ts = 1/fs, S̃k = S̃(f =
kf0) . Recall the discrete Fourier transform is defined as a Fourier transform operating on a sampled
periodic signal:

S̃k =

∫ T0=nTs

t=0

s̃(t)e−j2πftdt|t=nTs,f=kf0

=

N−1∑

n=0

s̃ne
−j2πkf0nTs

=

N−1∑

n=0

s̃ne
−j2πnk/N

where Tsf0 = 1/N .

http://www.websdr.org/
http://www.websdr.org/
http://kiwisdr.com/public/
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1.6 IQ imbalance

In practice, the two local oscillators of the USRP daughterboard analog IQ receiver are such that
Q(t) is not exactly the same amplitude as I(t) and not exactly 90 degrees out of phase with I(t).
This is called IQ imbalance. The practical result is that in the spectrum analyzer or waterfall view,
the signals at positive frequencies will have weak images at the corresponding negative frequencies,
and visa versa. These images are not really there, they are an artifact of the IQ imbalance.

If there is IQ imbalance present, then the amplitude and phase of I(t) is shifted relative to what
it should be by a complex factor (1 + α)ejθ for small values of α, θ . We write the complex output
r̃′(t) of the imperfect receiver with IQ imbalance as

r̃′(t) = I ′(t) + jQ′(t) (1.73)

= (1 + α)ejθI(t) + jQ(t) (1.74)

I ′(t) = (1 + α)cosθI(t) (1.75)

Q′(t) = Q(t) + (1 + α) sin θI(t) (1.76)

For small theta, this matches the approximation

Re{out} = Re{in}(1 + Magnitude),

Im{out} = Im{in}+Re{in} × Phase
(1.77)

where we define

Re{out} = I ′(t),

Re{in} = I(t),

Im{out} = Q′(t),

Im{in} = Q(t),

Magnitude = α,

Phase = θ.

In the frequency domain, IQ imbalance appears in the form of an image, i.e. every signal at
frequency fb will have a mirror image at −fb . For a signal at fb, the desired complex baseband
signal is r̃(t) = s̃(t) = ej2πfbt , but with IQ imbalance, the actual observed complex baseband signal
is

r̃′(t) = µej2πfbt + νe−j2πfbt (1.78)

with complex constants µ, ν , thus explicitly showing the desired signal at fb and the mirror image
at −fb. The complex constants µ, νare functions of α, θ . When α = θ = 0, ν = 0.

In general, we can write the received complex signal obtained at the output of an imperfect IQ
receiver as

r̃′(t) = µr̃(t) + νr̃∗(t) (1.79)

where r̃′(t) is the receiver output, r̃(t) = s̃(t) is the desired complex signal, and r̃∗(t) is the image.
The image rejection is 20 log |ν/µ| dB.

The mirror image can be nulled out by multiplying Q′(t) by the inverse of this complex factor
(1+α)ejθ, i.e. 1

1+αe
−jθ = βejψ. The values of the magnitude β and phase ψ can be found manually

(with hardware or software controls) or by an adaptive algorithm.
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Exercise: Verify the expressions for the imperfect receiver outputsI ′(t) and Q′(t) given in section 4
above.

Exercise: Verify the approximate expressions for IQ imbalance correction given in Section 4 above.

1.7 Radio tuning, selecting a particular signal

The USRP receiver (section 1.3, figure fig. 1.14) is designed to receive radio frequency (RF) signals
at any frequency fc in the range fLO ± fs/2 MHz, where fLO is the local oscillator (LO) frequency.
In this example, consider the complex signal at the output of the USRP (that is connected to the
computer via Ethernet and processed in software such as GNURadio).

The GNURadio block diagram software includes a so-called “USRP source block” that controls
the analog oscillator frequency shown in red on the USRP daughter board as well as the NCO
frequency on the USRP motherboard shown in blue. The value of fLO set in the USRP source
block determines the frequency of both oscillators fred and fblue such that fLO = fred + fblue.
When selecting the frequency fLO in the USRP source block, the values of fred and fblue are set
automatically by the USRP hardware, so that we don’t need to think about them.

The USRP source block has a complex signal output and has the LO frequency and sampling
rate as parameters. This complex signal can be live from the USRP source block output or a IQ
file in 2 channel WAV format that was recorded previously. Note that this LO frequency in the
GNURadio software is not the same as the LO frequency in the USRP daughterboard mentioned in
an earlier section.

In this example, we choose fLO = 102 MHz and fs = 2 MHz, so that the frequency range on the
spectrum or waterfall is 101–103 MHz, which is part of the FM broadcast band. Selecting a signal
(radio station) at a particular frequency fc is called “tuning” the radio. In this example we want to
tune in the radio station at 101.9 MHz.

The USRP source block operates by generating two local oscillator signals at fLO and mixing
(multiplying) it with a desired radio frequency (RF) carrier wave r+(t) = ej2πfct at fc to yield a
complex baseband signal r̃(t) = I(t) + jQ(t) at the difference frequency fb = fc − fLO, where we
write

r+(t)e−j2πfLOt = ej2πfcte−j2πfLOt

= ej2πfbt

= cos 2πfbt+ j sin 2πfbt

= I(t) + jQ(t)

(1.80)

I(t) and Q(t) are processed correctly, provided that fc is close enough to fLO, i.e. the difference
is less than half the sampling rate, |fc−fLO| < fs/2 or fLO−fs/2 < fc < fLO+fs/2. The difference
frequency fb = fc − fLO, where |fb| < fs/2.

The USRP source block function is to shift a 2 MHz wide slice of spectrum from 101–103 MHz
centered at fLO = 102 MHz down to −1–1 MHz (positive and negative frequencies centered around
0 Hz. The complex baseband signal r̃1(t) = ej2πfbt can represent positive and negative frequencies,
since fb can be positive or negative and |fb| < 1 MHz. The 1 MHz slice of spectrum may contain
many different signals at various frequencies within the 1 MHz range (recall waterfall plots mentioned
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f

fLOfcfLO − fs
2 fLO + fs

2
(102MHz)(101.9MHz)(101MHz) (103MHz)

fb = −0.1MHz

fs = 2MHz

Figure 1.25: Frequency tuning example in passband (frequency axis not to scale).

f

fLOfcfLO − fs
2 fLO + fs

2
(0MHz)(−0.1MHz)(−1MHz) (1MHz)

fb

fs = 2MHz

Figure 1.26: Frequency tuning example in baseband (frequency axis not to scale).

earlier). For this case, FM radio stations use carrier frequencies in 0.2 MHz steps. In the frequency
range 101-103 MHz, there are 10 stations at 101.1, 101.3, 101.5 etc. up to 102.9 MHz. In this
example, we wish to tune in the station at 101.9 MHz.

If the RF carrier wave is turned on and off to transmit information in e.g. Morse code, then we
wish to listen to (or digitally decode) the complex baseband signal r̃1(t) = cos 2πfbt+j sin 2πfbt and
no other signals. If fb is outside the audio range we want to listen to, or if fb is not the frequency
expected at the digital decoder input, then we multiply r̃1(t) by a complex exponential e−j2πfdt at
frequency fd to obtain another complex baseband signal

r̃2(t) = ej2πfbte−2πfdt

= ej2π(fb−fd)t

= e2πfEt

(1.81)

at frequency fE = fb− fd, where fE is chosen to be the frequency for listening (or for the decoder).

In effect, we have shifted the spectrum twice. We first shifted fc by fLO to obtain fb and then
shifted fb by fd to get the exact frequency fE we want to listen to (for Morse code) or for a digital
decoder.

This idea of two successive spectrum shifts will be seen again later when we discuss the Weaver
demodulator.

List of frequencies used above
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• fs: sampling rate of USRP source block

• fLO: local oscillator frequency

• fc: carrier frequency of desired signal at radio frequency near 10 MHz (passband)

• (fLO − fs/2) < fc < (fLO + fs/2): passband frequency range

• fb = fc − fLO: desired signal obtained by converting to baseband

• (−fs/2) < fb < (fs/2): baseband frequency range (centered at 0 Hz)

• Conversion (spectrum shifting) is done by complex multiply:

r̃1(t) = r+(t)e−j2πfLOt

= ej2πfcte−j2πfLOt

= ej2πfbt

= cos 2πfbt+ j sin 2πfbt

= I(t) + jQ(t)

• fE : desired frequency for listening or for decoder (could be zero or not zero)

• fd = fb − fE : digital local oscillator in baseband used for tuning into desired signal

• fd: is controlled by tuning knob or mouse

• The second spectrum shift is done by complex multiply:

r̃2(t) = ej2πfbte−2πfdt

= ej2π(fb−fd)t

= e2πfEt

More generally, if the RF signal contains information encoded in its amplitude and phase, then
the RF signal r+(t) = a(t)ejφ(t)ej2πfct is multiplied by the complex local oscillator e−j2πfLOt| =
cos 2πfLOt− j sin 2πfLOt to yield

r̃1(t) = r+(t)e−j2πfLOt

= [a(t)ejφ(t)ej2πfct]e−j2πfLOt

= a(t)ejφ(t)ej2πfbt

= I(t) + jQ(t)

(1.82)

where the received complex baseband signal is

r̃1(t) = I(t) + jQ(t)

= a(t) cosφ(t) cos 2πfbt+ ja(t) sinφ(t) sin 2πfbt
(1.83)

If we want to receive the information contained in a(t), φ(t) then we multiply r̃1(t) by a complex
exponential e−j2πfbt at exactly −fb to obtain

r̃2(t) = r̃1(t)e−j2πfbt

= a(t)ejφ(t)e−j2πfbt

= a(t)ejφ(t)

(1.84)
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centered at fE = 0, followed by a low pass filter to filter out any other signals. We have shifted the
spectrum twice, once by fLO using analog circuits and a second time by fb using software to receive
the desired signal. In this case, the decoder uses fE = 0

Exercise: Explain the operation of a transmitter that has a selectable carrier frequency. Sketch a
block diagram and the signal spectrum. The transmitter uses the same frequency shifting operations
as the receiver, but in reverse order.

Exercise: For an complex baseband signal s̃(t) = I(t) + jQ(t) = a(t)ejφ(t), find an expression for
a(t) as a function of I(t), Q(t)

Exercise: Given a USRP daughterboard receiver with fLO = 142 MHz and an incoming RF signal
fc = 142.17 MHz, find an expression for

1. the two real output signals from the receiver I(t), Q(t) , and

2. the complex output signal I(t) + jQ(t) written in polar form a(t)ejφ(t)



Chapter 2

Amplitude modulation (AM)
transmitters

In this chapter we apply the mathematics of complex signals from Chapter 1 to a particular class of
signals.

In Chapter 1 we wrote a general radio signal s(t) = a(t) cos[2πfct + φ(t)] and showed that we
can use a(t) and/or φ(t) or some combination thereof to represent the message m(t).

In this chapter, we consider the class of signals for which the amplitude a(t) varies with time
but the phase φ(t) is kept constant with time. This class of signals is called Amplitude Modulation
(AM) signals. In particular, we use the message m(t) to modulate the amplitude a(t) and leave the
phase φ(t) constant. This method of modulation is called amplitude modulation (AM).

We study AM signals and their waveforms 1 in the time and frequency domains with messages
m(t) that are sine waves (single tone), general analog and digital (section 1.25). We also study how
to implement a signal generator for AM signals using software as well as analog hardware.

Learning objectives

• Math expression for AM signal with sine wave message in time and frequency domain.

• Concept of sidebands in AM signal spectrum

• Power in carrier and sidebands of AM signals

• AM spectrum with general analog message

• AM signals with digital message

• Generating AM signals using software

• Generating AM signals using analog hardware

1The waveform of a signal s(t) is the shape of a graph of s(t). The spectral shape of S(f) is the shape of a graph
of S(f).

53
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2.1 Amplitude modulation with full carrier

We consider AM signals s(t) where the message m(t) to modulate the amplitude a(t) is varied in
step with the message m(t) and the phase φ(t) is left constant.

AM waves typically use carrier frequencies on the order of MHz, whereas the message frequency
is typically on the order of kHz.

Amplitude modulation is used for

• broadcasting (AM radio), using carrier frequencies in the medium wave band (540–1700 kHz),
the long wave band 153–279 kHz (in Europe only) and the short wave bands (3–30 MHz).

• aircraft navigational aids (190–535 kHz and 108–118 MHz)

• aircraft voice communications (118–137 MHz).

For AM, we set the amplitude
a(t) = Ac[1 + kam(t)] (2.1)

with |kam (t)| < 1 or [1 + kam (t)] > 0 and fc >> w, where w is the bandwidth of m(t).

Note that a(t) is a DC term 1 plus the message m(t) scaled by a gain factor ka. We choose ka
such that a(t) > 0 for all values of m(t). We also assume that the bandwidth of m(t) is much less
than the carrier frequency fc used.

For AM, we assume φ(t) is a constant or zero. Thus the transmitted AM signal is of the form:

s(t) = a(t) cos(2πfct+ φ)

= Ac[1 + kam(t)] cos(2πfct+ φ)

φ(t) = φ = constant

(2.2)

φ is set to zero for convenience, but could be any constant value independent of time.

From the mathematics we can see that we have modulated the amplitude a(t) of the signal s(t)
in step with the message m(t), so that s(t) is an AM signal.

For the special case where there is no message to send, m(t) = 0 and s(t) = Ac cos(2πfct) which
is simply the carrier wave. In practice, m(t) could be an analog or digital message as described in
section 1.2.5.

For a single tone message, m(t) = Am cos(2πfmt), the resulting AM wave is given by the follow-
ing:

s(t) = Ac[1 + kaAm cos(2πfmt)] cos(2πfct) (2.3)

Recall that an analog message (voice or music) is time varying in the practical case and will
normally change from one frame to the next. (Recall that frames for audio are typically 5–23 ms).
The AM signal above with m(t) = Am cos(2πfmt) is valid for one frame in which the message
contains only one frequency fm during that frame. In the next frame, the message could be the
same or could be different.
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Figure 2.1: AM modulated signal

2.1.1 AM waveform with single tone message

For our initial analysis of s(t), we will assume the message m(t) is of constant frequency fm for all
frames. The AM signal s(t) appears in the time domain to be the carrier wave with an envelope2

that replicates the shape of the modulating tone.

m(t) = Am cos 2πfmt

where fm = message frequency

a(t) = Ac(1 + kam(t)]

where φ(t) = 0

s(t) = Ac(1 + kam(t)] cos 2πfct

s(t) = Ac(1 + kaAm cos 2πfmt] cos 2πfct

s(t) = Ac(1 + µ cos 2πfmt] cos 2πfct

s(t) = Ac cos 2πfct+Acµ cos 2πfmt cos 2πfct

µ = kaAm < 1is called the modulation index

We use the character µ = Amka for simplification and to serve as the modulation index. The
modulation index µ can be given as a percentage where 1 = 100%.

Using the complex I-Q notation and assuming φ(t) = φ = constant not necessarily zero

s(t) = a(t) cos(2πfct+ φ(t))

= Re{a(t)ejφ(t)ej2πfct}
(2.4)

2the envelope here is the real part of the complex envelope
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Thus for AM

s(t) = Re{Ac[1 + kam(t)]ej2πfctejφ}
= Re{Ac[1 + µ cos 2πfmt]e

j2πfctejφ}
= Ac[1 + µ cos 2πfmt] cos[2πfct+ φ]

a(t) = Ac[1 + µ cos 2πfmt]

φ(t) = φ

s̃(t) = a(t)ejφ = Ac[1 + µ cos 2πfmt]e
jφ

= I(t) + jQ(t)

I(t) = a(t) cosφ = Ac[1 + µ cos 2πfmt] cosφ

Q(t) = a(t) sinφ = Ac[1 + µ cos 2πfmt] sinφ

When φ = 0

s(t) = Re{Ac[1 + kam(t)]ej2πfct}
= Re{Ac[1 + µ cos 2πfmt]e

j2πfct}
= Ac[1 + µ cos 2πfmt] cos[2πfct]

a(t) = Ac[1 + µ cos 2πfmt]

φ(t) = 0

s̃(t) = a(t) = Ac[1 + µ cos 2πfmt]

= I(t) + jQ(t)

I(t) = a(t) = Ac[1 + µcos2πfmt]

Q(t) = 0

We will use the version of s(t) with φ = 0 in the subsequent sections.

2.1.2 AM spectrum

What does the AM wave look like in the frequency domain?

We first consider the special case where the message m(t) = Am cos(2πfmt) with Am = 1, and
take the Fourier transform of the message

m(t)
Fourier−→ M(f)

Am cos(2πfmt)
Fourier−→ 1

2
Am[∂(f − fm) + ∂(f + fm)] (2.5)

This result is obtained from the Fourier transform properties for a cos wave.

m(t)↔M(f)

m(t) = cos(2πfmt)

= (ej2πfmt + e−j2πfmt)/2

ej2πfmt ↔ δ(f − fm) positive frequencies

e−j2πfmt ↔ δ(f + fm) negative frequencies

M(f) =
1

2
[δ(f − fm) + δ(f + fm)]
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Figure 2.2: Frequency Spectrum of a Single Tone

Note that the cos wave contains both positive and negative frequencies arising from the exponentials
rotating clockwise and counterclockwise respectively as time increases.

The spectrum for any real signal is symmetrical about zero frequency. The spectrum of the
message M(f) can be drawn as shown in fig. 2.2, with both positive and negative frequencies. Note
that the delta functions are drawn as vertical lines with arrows that suggest they go to infinity. The
delta function δ(f − fm) is zero for all frequencies f 6= fm. For the frequency f = fm , the delta
function δ(f − fm) has infinite height, zero width and area 1, so that we can write the area under
the curve

∫∞
−∞ δ(f − fm) = 1.

The spectrum of the carrier wave is written

c(t)↔ C(f)

c(t) = cos(2πfct)

= (ej2πfct + e−j2πfct)/2

ej2πfct ↔ δ(f − fc) positive frequencies (2.6)

e−j2πfct ↔ δ(f + fc) negative frequencies (2.7)

C(f) =
1

2
[δ(f − fc) + δ(f + fc)] (2.8)

C(f) appears as two delta function spikes, one at fc and one at −fc.

To find the spectrum of the AM signal

s(t) = Ac(1 + µ cos 2πfmt] cos 2πfct

= Ac cos 2πfct+Acµ cos 2πfmt cos 2πfct
(2.9)

we take the Fourier transform s(t)
Fourier−→ S(f) and obtain the result shown in fig. 2.3.

We will discuss the result for S(f) first, and then do the mathematics.

Observe that the spectrum of an AM signal contains both positive and negative frequencies.
The AM signal spectrum is the sum of two components: the spectrum of the carrier wave c(t) at
±fc plus the spectrum of the message (M(f) shifted both up and down by fc. There is a very
important principle at work here: the frequency shifting properties in Section 1.1.5. Notice that in
the expression

s(t) = Ac cos 2πfct+Acµ cos 2πfmt cos 2πfct
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Figure 2.3: Frequency Spectrum of AM Wave

the message signal m(t) is multiplied by the real carrier wave c(t). Whenever a message signal is
multiplied by a real carrier wave containing both positive and negative frequencies, the spectrum of
the message signal is shifted both up and down.

This result for the AM signal spectrum can be demonstrated in two different ways. The first
method is to do it algebraically by simplifying s(t) in the time domain and then converting the
resulting collection of individual sinusoidal terms to their frequency domain representation. Note:
The trigonometric identity cosα cosβ = 1

2 [cos(α + β) + cos(α − β)] is used to produce line three
from line two below:

s(t) = Ac[1 + µ cos(2πfmt)] cos(2πfct)

= Ac cos(2πfct) +Acµ cos(2πfmt) cos(2πfct)

= Ac cos(2πfct) + (Acµ/2) cos(2π[fc + fm]t) + (Acµ/2) cos(2π[fc − fm]t) (2.10)

The second and third cosine terms represent the socalled sidebands 3 as seen in the frequency
domain. The frequency of the sidebands relative to the carrier frequency holds the useful information
describing the message.

The AM signal spectrum S(f) may be written by taking the Fourier transform of each of the 3
terms in the expression for s(t) above to obtain

S(f) =
Ac
2

[δ(f − fc) + δ(f + fc)]

+
Acµ

4
[δ(f − fc − fm) + δ(f + fc + fm)]

+
Acµ

4
(δ(f − fc + fm) + δ(f + fc − fm))] (2.11)

Exercise: Obtain s(f) by writing s(t) for an AM signal as s(t) = [s+(t)+s−(t)]/2, taking the Fourier
transform of the positive and negative frequency terms separately and adding them together to get
the final result for S(f)

Exercise: show that µ = AcMAX−AcMIN
AcMAX+AcMIN

= Amka, where AcMAX and AcMIN are respectively the

3Here is yet another term for a kind of band, to go with the terms baseband and passband
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Figure 2.4: Spectral Representation of AM signal showing positive frequencies only

highest and lowest positive amplitude obtained by s(t). Hint: AcMAX = Ac(1 + µ); AcMIN =

Ac(1− µ), Acmax

Acmin
= Ac(1+µ)

Ac(1−µ) .

Observe that even though we seem to only modify the amplitude of the carrier wave at fc
sidebands are observed at fc + fm and fc − fm in the frequency domain representation. How could
there by frequencies at fc + fm and fc − fm when all we are doing is varying the amplitude of the
carrier at fc without changing its frequency?

The reason is that to see the sidebands at fc + fm and fc− fm we must observe the signal over a
sufficiently long time (at least one cycle of the message m(t)).4 If we observe the signal for a short
time over a small fraction of a cycle of m(t), then we see only the carrier wave at frequency fc with
amplitude a(t) = Ac[1 + µcos2πfmt] at time t and we don’t see any sidebands.

The second method of showing the result is done using Fourier transform properties. Note that
a Fourier transform is taken over a long time including at least one cycle of the message m(t), so
that we expect to see the sidebands. The result can also be shown using a Fourier series, where the
signal is assumed to be periodic with a period equal to one cycle of the message.

2.1.3 Power in carrier wave and sidebands

The power of a signal is a quantity of interest and one may wish to calculate the power of the
carrier or sideband components of the signal specifically. Using the time domain expression for s(t),
the power is proportional to the square of the coefficient of each cosine term. Using the frequency
domain expression S(f), the power is proportional to the square of the coefficient of each δ-function
term.

4If we have one complete cycle of m(t) then we have a periodic signal and can take the Fourier series (or Fourier
transform) to observe the sidebands.
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The power versus frequency curve is displayed on a spectrum analyzer, typically in dBm, or
decibel relative to one milliwatt at 50 Ω. For this case, P (dBm) = 20logV + 13 where V is rms
voltage, as was shown in Section 1.4.

In what follows we assume 1 Ω rather than 50 Ω for convenience as is typically done for commu-
nication signals mathematics. The power into one ohm [s(t)]2 = |S(f)|2 without the need for scaling
factors to account for impedance.

Consider an AM signal with single tone modulation m(t) = Am cos 2πfmt:

s(t) = Ac[1 + µ cos(2πfmt)] cos(2πfct)

which, in the frequency domain is

s(t) = Ac cos(2πfct) + (Acµ/2) cos(2π[fc + fmt)]t) + (Acµ/2) cos(2π[fc − fm]t) (2.12)

• Power at carrier atfc: A
2
c/2

• Power of sideband at fc + fm: (1/2)(Acµ/2)2 = (1/8)A2
cµ

2

• Power of sideband at fc − fm: (1/2)(Acµ/2)2 = (1/8)A2
cµ

2

• Carrier power: 2
(
Ac
2

)2
=

A2
c

2

– factor of 2 because positive and negative frequencies

• Upper sideband power: 2
(
Acµ

4

)2

=
A2
cµ

2

8

• Lower sideband power: 2
(
Acµ

4

)2

=
A2
cµ

2

8

• USB+LSBPower
TotalPower =

A2
cµ

2

8 +
A2
cµ

2

8
A2
c
2 +

A2
cµ

2

8 +
A2
cµ

2

8

= µ2

2+µ2

Exercise: If the power at fc = 0 dBm, what is the power at fc + fm?

Answer : Given: A2
c/2 = 1 mW; (1/8)A2

cµ
2 = (1 mW)µ2/4. If µ = 1 then the power at fc + fm is

(1 mW)/4 = 0.25 mW. A drop in power by half is −3 dB, thus one quarter of the power is −6 dB.

In the special case where µ = 1 (see fig. 2.5), we have 100% modulation (minimum envelope
value is zero).

2.1.4 Overmodulation

Given the AM signal
s(t) = Ac[1 + µ cos(2πfmt)] cos(2πfct)

, with modulation index µ > 1 (greater than 100%) the real envelope, a(t) = [1 + µ cos(2πfmt)]
becomes less than zero and no longer looks like the message being sent. This case is called “over-
modulation”. The phase of the carrier wave is shifted by 180 degrees when [1 +µ cos(2πfmt)] is less
than zero.
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Figure 2.5: AM Spectrum: Sidebands with modulation index 1

In the frequency domain, the sum of the amplitudes (not the power) of the sidebands exceeds
the amplitude of the carrier.

Exercise: What happens to the complex envelope s̃(t) when overmodulation occurs? Write an
expression for s̃(t).

Answer:

s̃(t) = a(t)ejφ = Ac(1 + µcos2πfmt)

= I(t) + jQ(t)

I(t) = Ac(1 + µcos2πfmt) may be < 0 when µ > 1

Q(t) = 0

|s̃(t)| = |a(t)ejφ|
= |I(t) + jQ(t)|
=
√
I2(t) +Q2(t)

= |Ac[1 + µcos2πfmt]|
≥ 0

The real envelope |a(t)| is the rectified version of I(t).

Exercise: Write an expression for S̃(f) and s(f) for the overmodulation case with µ = 2.
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(a) AM waveform for ∆ = 1 (b) AM waveform for ∆ > 1

Figure 2.6: AM waveforms for various ∆ values

(a) AM spectrum with 200% modulation (b) AM spectrum with overmodulation

Figure 2.7: AM spectra with various modulation levels

2.1.5 AM signal with a general message

We can write the AM signal in time and frequency domain for a general message m(t) as

s(t) = Ac[1 + kam(t)] cos 2πfct (2.13)

= Ac[1 + kam(t)]
(ej2πfct + e−j2πfct)

2
(2.14)

=
Ac
2
ej2πfct +

Ac
2
e−j2πfct +

Acka
2

m(t)ej2πfct +
Acka

2
m(t)e−j2πfct (2.15)

To find the frequency domain expression S(f) use the Fourier transform properties

m(t)↔M(f)

ej2πfct ↔ δ(f − fc)
e−j2πfct ↔ δ(f + fc)

exp(j2πfct)m(t)↔M(f − fc)
exp(−j2πfct)m(t)↔M(f + fc)

The result is

S(f) =
Ac
2

[δ(f − fc) + δ(f + fc)] +
Acka

2
[M(f − fc) +M(f + fc)] (2.16)

This expression shows both positive and negative frequencies. We often draw a picture of the positive
frequencies only, and we can write



CHAPTER 2. AMPLITUDE MODULATION (AM) TRANSMITTERS 63

(a)

(b)

Figure 2.8: Upper and lower side bands as well as base band spectra all showing only positive
frequencies.

S(f > 0) =
Ac
2
δ(f − fc) +

Acka
2

M(f − fc)

The modulation spectrum M(f) is shifted up so it is centered around fc as in fig. 2.8.

In fig. 2.9, both positive and negative frequencies are shown. In this figure we write ω = 2πf,wc =
2πfc.

Observe that the AM signal spectrum is the sum of two components: the spectrum of the
carrier wave at ±fc plus the spectrum of the message shifted both up and down by fc. Observe
that because the message spectrum contains both positive and negative frequencies, the AM signal
spectrum contains components both above and below the carrier frequency.

In general, M(f) will change shape with each frame. For a particular frame, and for illustration
purposes, we draw it as it would be for a voice signal: an asymmetrical shape that is zero for
f < 300 Hz, peaks near f = 1000 Hz, and is zero for f > 2700 Hz. (Think of the green line in
sndpeek https://soundlab.cs.princeton.edu/software/sndpeek/). The negative frequencies
will be the mirror image of this shape.

Exercise: Obtain s(f) by writing s(t) for an AM signal as s(t) = [s+(t)+s−(t)]/2, taking the Fourier
transform of the positive and negative frequency terms separately and adding them together to get
the final result for S(f).

https://soundlab.cs.princeton.edu/software/sndpeek/
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Figure 2.9: Spectrum of upper and lower sidebands showing negative frequencies

2.1.6 Digital Messages Transmitted Using AM

Digital messages can be sent by using a binary modulating signal; the amplitude of the carrier is
multiplied by a high voltage (logic one) and a low voltage (logic zero). A modulated wave with the
capacity to represent a binary bit stream is the result. This method is known as amplitude shift
keying (ASK). The most common case is where logic 1 is a positive voltage, say +1 volts and a logic
0 is a negative voltage say -1 volts. In general we can write m(t) = ±Am. Thus we can write the
digital AM signal

s(t) = Ac[1 + kam(t)] cos(2πfct)

= Ac[1± kaAm]cos2πfct
(2.17)

If we choose Am such that kaAm = 1, then

s(t) = Ac[1± kaAm]cos2πfct

= Ac[1± 1]cos2πfct

= 2Accos2πfct for logic 1

= 0 for logic 1

depending on whether a logic 1 or a logic 0 was sent. In this case the amplitude is shifted from 2Ac
to 0, and it is called on-off keying (OOK) and can be used for Morse code transmission.

2.1.7 Generating an AM signal digitally in software

Next we look at how to build transmitters and receivers. We have a message that we wish to send
and we need a way to send and receive it.

One approach is to use digital means, for example by programming the USRP using GNU Radio.
The USRP includes the DAC and analog IQ mixer, filters and amplifiers connected to an antenna.

The transmitted AM signal is of the form:
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Figure 2.10: Conceptual modulation and Ddmodulation of the Signal m(t)

Figure 2.11: Digital transmitter configuration

s(t) = a(t) cos(2πfct+ φ)

= Ac[1 + kam(t)] cos(2πfct+ φ)
(2.18)

where φ is a constant phase. We can write the AM signal s(t) as the real part of a complex signal:

s(t) = Re[a(t)ejφej2πfct]

= Re[s̃(t)ej2πfct]

where the complex envelope:

s̃(t) = a(t)ejφ

= a(t) cosφ+ ja(t) sinφ

= i(t) + jq(t)

Usually we choose φ = 0, so that i(t) = a(t) = 1 + kam(t), q(t) = 0

Given the message m(t), the digital AM transmitter simply implements the equations i(t) =
1 + kam(t)

2.1.8 Analog-only method to generate an AM signal

In the days before software radio, only analog circuit-theory based methods were available to generate
an AM signal. The mathematics tells us that we want to multiply the message signal m(t) with the
carrier wave c(t), in particular: s(t) = [1 + kam(t)]c(t). So we need to build an analog multiplier.

One purely analog method uses a non-linear circuit with output

v2(t) =
∑

i

ai[vi(t)]
i = a1v(t) + a2v

2(t) + ...
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(a)

(b)

Figure 2.12: Fundamental Analog Transmission Method

Any non-linearity v2(t) =
∑
i ai[vi(t)]

i will cause multiplication where i ≥ 2.

This non-linearity could be a diode operating with a small input voltage. The non-linearity
includes a square term where the input is multiplied by itself.

As shown by the identity, cosα cosβ = 1
2 [cos(α+β)+cos(α−β)] and also in the previous section,

the result of multiplying two signals is sinusoidal components located at the sum and the difference
of carrier and message frequencies.

We model the non-linearity as the first two terms of the Taylor series expansion

v2(t) =
∑

i=1,2

ai[vi(t)]
i (2.19)

where the input signal v1(t) = m(t) + c(t) is the sum (not the product) of the message and the
carrier. Thus we write

v2(t) = a1v1(t) + a2[v2(t)]2

v1(t) = m(t) + c(t)

vi(t) = m(t) +Ac cos(2πfct)

∴

v2(t) = a1[m(t) +Ac cos(2πfct)] + a2[m(t) +Ac cos(2πfct)]
2

v2(t) = a1m(t) + a1Ac cos(2πfct) + a2m
2(t) + 2a2m(t)Ac cos(2πfct) + a2A

2
c cos2(2πfct)

Using the trigonometric identity, cos2(α) = (1/2)[1 + cos(2α)], we arrive at

a2A
2
c cos2(2πfct) = (1/2)a2A

2
c [1 + cos(4πfct)] (2.20)
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Figure 2.13: Adding Message and Carrier Prior to Non-linearity

Sorting by frequency we get the following simplified expression:

v2(t) =a1m(t) + a2m
2(t) + (1/2)a2A

2
c

+ cos(2πfct)[a1Ac + 2a2Acm(t)]

+ cos(4πfct)[(1/2)a2A
2
c ]

2

(2.21)

We now apply a band-pass filter centred at fc ,to get the desired modulator output signal

s(t) = a1Ac cos 2πfct[1 + (2a2/a2)m(t)]

Thus we have created an AM wave s(t) by adding m(t) + c(t) and then using a non-linearity and
band pass filter. For this AM wave µ = 2a2/a1.

Exercise: write a frequency domain expression for v2(t).

Answer :

V2(f) =a1
Ac
2

[δ(f − fc) + δ(f + fc)]

+ 2a2Ac[M(f − fc) +M(f + fc)]

+ a1M(f) + a2FT [m2(t)]

+
a2A

2
c

2
[δ(f) + δ(f − 2fc) + δ(f + 2fc)]

Another type of non-linearity is diode switching.

v2(t) =

{
v1(t), c(t) > 0

0, c(t) < 0

In this case, the message waveform plus the carrier wave signal is half-wave rectified and the result
is band-pass filtered at the carrier wave frequency.

Exercise: Show that the filter output contains an AM wave. Hint:

v1(t) = c(t) +m(t)

v2(t) = [c(t) +m(t)]gp(t)



CHAPTER 2. AMPLITUDE MODULATION (AM) TRANSMITTERS 68

(a) DSB-SC spectrum
(b) SSB-SC spectrum

Figure 2.14: Spectra for double and single side band signals

where gp(t) is a uni-polar square wave at fc.

Answer : Find the Fourier series for the square wave

v2(t) = [c(t) +m(t)][
1

2
+

2

π
cos 2πfct+ . . .]

=
Ac
2

[1 +
4

πAc
m(t)] cos 2πfct+ . . .

which is an AM wave with ka = 4
πAc

plus components at frequencies removed from fc

2.2 Double Sideband Modulation

Carrier waves require power to transmit but they do not in themselves contain any information about
the message. Sometimes we want to transmit an AM wave without its carrier wave (this lessens the
power requirements for transmission and thus may be a more economical course of action for certain
applications). Filtering out (suppressing) the carrier frequency band leads to a double sideband -
suppressed carrier signal (DSB-SC) and further filtering out one of either the upper sideband (USB)
or lower sideband (LSB) will produce what is called a single sideband – suppressed carrier signal
(SSB-SC).

Yet another type is vestigial sideband modulation (VSB) which can be used practically for
transmission of television signals. In essence VSB = SSB + Carrier.

Modulation Type Advantages Disadvantages

AM Easily demodulated
High power requirements due to
carrier

DSB-SC Lower power requirements
Carrier location required. Redun-
dant SB information

SSB-SC
Less bandwidth and power require-
ments

Don’t know where carrier is

VSB
Less bandwidth and power require-
ments. Lack of redundancy

Table 2.1: Amplitude based modulation schemes
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2.2.1 Double sideband suppressed carrier waveform

For a double sideband signal we know that the only difference from the AM case is the lack of carrier
term. Thus with a message m(t) = Am cos 2πfmt and a carrier wave c(t) = Accos2πfct, the DSB-SC
signal is represented by

s(t) = m(t)c(t)

= AcAm cos(2πfmt) cos(2πfct)

=
AcAm

2
[cos(2π[fc − fm]t) + cos(2π[fc + fm]t)]

(2.22)

where we let the constant AcAm represent any scaling that has taken place by way of amplification
or any hardware effects. We have used the trigonometric identity

cosα cosβ =
1

2
[cos(α− β) + cos(α+ β)]

For DSB-SC with message m(t) = Am cos 2πfmt, I(t) = Ac cos(2πfmt) and Q(t) = 0. A DSB-
SC modulator is simply a multiplier that multiplies the message signal m(t) with the carrier c(t) as
illustrated in fig. 2.15.

Figure 2.15: DSB-SC modulator block diagram

Figure 2.16 shows the waveforms (m(t), c(t), s(t) respectively) for DSB-SC. Note the phase
reversal of the carrier wave when the message signal is less than zero.

DSB may be view as an extreme case of AM overmodulation

s(t) = Ac[1 + µ cos(2πfmt)] cos(2πfct)

= Ac cos(2πfct) +Acµ cos(2πfmt) cos(2πfct)

with µ � 1 and Ac � 1 and µAc held constant. In this case, the power in the sidebands is
much greater than the power in the carrier. In the limit µ → ∞ and Ac → 0 and µAc = 1, the
overmodulated AM signal becomes a DSB signal.

2.2.2 DSB spectrum

The spectrum of the single tone message m(t) = Am cos 2πfmt is shown in fig. 2.18.

The spectrum of a DSB signal with carrier c(t) = Ac cos 2πfct and message m(t) = Am cos 2πfmt
is two peaks at fc − fm and fc + fm (and no power at fc) as shown in fig. 2.19.
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Figure 2.16: DSB-SC waveforms

Figure 2.17: DSB as limiting case of overmodulated AM with weak but non-zero carrier

The DSB signal spectrum will also include negative frequencies with peaks at −(fc − fm) and
−(fc + fm) (not shown in fig. 2.19).

Notice the general principle at work here: multiplying two cos waves together yields the sum and
difference frequencies, as can be seen from the trigonometric identity cosα cosβ = 1

2 [cos(α − β) +
cos(α+ β)].

There is another related principle at work here. Notice that in the expression

s(t) = m(t)c(t) = AcAm cos 2πfmt cos 2πfct

the message signal is multiplied by the carrier wave. Whenever a message signal is multiplied by a
carrier wave, the spectrum of the message signal is shifted both up and down by the carrier frequency.

Observe that because the message spectrum contains both positive and negative frequencies, the
signal spectrum contains components both above and below the (suppressed) carrier frequency.

Exercise: for a DSB signal s(t), write an expression for S(f)

Exercise: for a DSB signal, find the power in each sideband.
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Figure 2.18: Spectrum of signle tone message

Figure 2.19: DSB spectrum showing both peaks

Exercise: for a DSB-SC signal, find the complex envelope

Exercise: write the spectrum of a DSB signal with a single tone message using delta functions.

Exercise: write the spectrum of a DSB signal with a general messagem(t)↔M(f)

2.3 Single sideband suppressed carrier and the Hilbert trans-
form

SSB type modulation may be viewed as double sideband with one of the sidebands removed.

Ironically, we will see that to remove the sideband, we add an additional term to the expression
for DSB-SC.

The information content in all variations of AM is in the sidebands. The advantage of SSB is
that all the available transmit power is used for one sideband only, whereas for DSB the available

(a) DSB-SC Spectrum
(b) SSB-SC Spectrum

Figure 2.20: Caption
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transmit transmit power is divided between two sidebands and for AM the available power is divided
between the carrier wave as well as the two sidebands. Thus SSB is more power-efficient than DSB
or AM.

SSB is commonly used for long distance over-the-horizon voice communications on the shortwave
bands 1.8 - 30 MHz that can propagate worldwide via the ionosphere. SSB may also be used on other
frequencies where power efficiency is important. Radio services using SSB include marine mobile,
aeronautical mobile and Amateur radio.

2.3.1 Derivation of SSB-SC using Hilbert transform and analytic signals

We can start the derivation of SSB-SC signal mathematics by considering the message spectrum
M(f). Note that M(f) has two sidebands on either side of DC or zero frequency. Thus M(f)
contains both positive and negative frequencies. For any m(t) that is real-valued with Fourier
transform M(f), we find that M(−f) = M∗(f) where ∗ denotes complex conjugate (same amplitude,
negative of the phase).

We can create an SSB-SC waveform in the same way as we created DSB-SC, except that we add
one new step:

1. eliminate one of the sidebands (say the negative frequency sideband) in the message spectrum
to create a new message with asymmetrical spectrum,

2. multiply the new message by the carrier wave as was done for DSB-SC.

The negative frequency sideband is eliminated by multiplying M(f) by the Heaviside step func-
tion 2u(f) = 1 + sgn(f) = 2 where

u(f) =

{
1 f > 0

0 f < 0
(2.23)

This is exactly the same approach taken at the end of section 1.1 (equation (1.33). The new message
can be written as analytic signal

Ma(f) = M+(f) = 2u(f)M(f) = [1 + sgn(f)]M(f) = M(f) + sgn(f)M(f)

and has an asymmetrial spectrum with only positive frequencies. The new message in the time
domain is

m+(t) = IFT{Ma(f)}
= IFT{M(f)}+ IFT{sgn(f)M(f)}
= m(t) + IFT{sgn(f)} ⊗ IFT{M(f)}

= m(t) +
j

πt
⊗m(t)

= m(t) + jm̂(t)

where ⊗ is the convolution operator and we have used the Fourier transform pair j
πt ↔ sgn(f). m̂(t)

is the so-called Hilbert transform of m(t) defined below. Recall that multiplication in the frequency
domain corresponds to convolution in the time domain.
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The new message

m+(t) = ma(t)

= m(t) + jm̂(t)
(2.24)

with only positive frequencies is an analytic signal also called the pre-envelope.

2.3.2 Hilbert transform definition and properties

From the above section m̂(t) = m(t)⊗ (1/πt) = 1
π

∫∞
−∞

m(τ)
t−τ dτ m̂(t) is called the Hilbert Transform

of m(t).

The Hilbert transform is a special kind of non-causal filter with impulse response 1/πt. It turns
out that the Hilbert transform shifts each sinusoidal component of m(t) by 90 degrees.

For m(t) = cos 2πfmt, m̂(t) = cos(2πfmt− π/2) = sin 2πfmt for any and all fm. The proof is in
showing that

cos 2πfmt⊗ (1/πt) =
1

π

∫ ∞

−∞

cos 2πfmτ

t− τ dτ

= sin 2πfmt

The proof is easier in the frequency domain

m(t)↔M(f)

m̂(t)↔ −jsgn(f)M(f)

m+(t) = m(t) + jm̂(t)

↔M(f) + sgn(f)M(f)

↔M+(f)

Thus the Hilbert transformer is an LTI system with transfer function H(f) = −jsgnf and
impulse response h(t) = 1

πt . The transfer function shows that every positive frequency is multiplied
by −j (and every negative frequency is multiplied by +j), thus shifiting the phase by 90 degrees.
For example, for a single tone message

m(t) = cos 2πfmt

=
1

2
[ej2πfmt + e−j2πfmt]

recall

ej2πfmt ↔ δ(f − fm)

M(f) =
1

2
[δ(f − fm) + δ(f + fm)]

M̂(f) = −jsgn(f)M(f)

=
1

2
[−jδ(f − fm) + jδ(f + fm)]

M̂(f) =
1

2j
[δ(f − fm)− δ(f + fm)]
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Figure 2.21: Impulse response of H(f).

thus

m̂(t) =
1

2j
[ej2πfmt − e−j2πfmt]

= sin 2πfmt

Figure 2.21 shows an approximation of the impulse response. In theory h(t) flips from minus
infinity to infinity at t = 0.

An analytic signal (or pre-envelope) is defined as m+(t) = m(t) + jm̂(t), where m̂(t) = m(t) ⊗
(1/πt) is the Hilbert transform of m(t). The pre-envelope contains only positive frequencies. We will
use this pre-envelope to create an SSB-SC signal with only the upper sideband, also called simply
an upper sideband (USB) signal.

The reasoning above can be repeated to define a pre-envelope with only negative frequencies
m−(t) = m(t)− jm̂(t) which is used to create a lower sideband (LSB) signal.

2.3.3 SSB-SC signal derived from pre-envelope

An SSB-SC signal is created by taking the analytic signal or pre-envelope as the message signal,
shifting it up to the carrier frequency, and taking the real part. Recall from the Fourier transform
properties that multiplying any signal by a complex exponential at fc shifts the spectrum of that
signal by fc. For a baseband message signal M(f) centered at f = 0, the spectrum is shifted so that
it is centered at fc.

m(t)↔M(f)

m(t)ej2πfct ↔M(f − fc)
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For DSB-SC, s(t) = m(t)c(t). For SSB-SC with upper sideband only

s(t) = Re{[m(t) + jm̂(t)]ej2πfct}
= Re{[m(t) + jm̂(t)][cos 2πfct+ j sin 2πfct]}
= m(t) cos 2πfct− m̂(t)sin2πfct

In general, an SSB-SC signal with a general message can be written

s(t) = m(t) cos 2πfct∓ m̂(t)sin2πfct

where the minus sign is for upper sideband and the plus sign for lower sideband.

If m(t) = cos(2πft), then m̂(t) = sin(2πft) where we denote the Hilbert transform by the hat ∧
symbol, and

s(t) = cos 2πfmt cos 2πfct∓ sin 2πfmt sin 2πfct

= cos 2π(fc ± fm)t
(2.25)

which is the single sideband at fc ± fm (plus for USB, minus for LSB).

Thus for USB, I(t) = m(t) and Q(t) = m̂(t). For a single tone message m(t) = Amcos2πfmt,
I(t) = cos(2πfmt) and Q(t) = sin(2πfmt). The constant Ac accounts for the signal power.

A single sideband USB signal s(t) = m(t) cos 2πfct− m̂(t)sin2πfct can be written as

s(t) = Re{a(t)ejφej2πfct}
= Re{[m(t) + jm̂(t)]ej2πfct}

Thus the complex envelope of an SSB-SC signal a(t)ejφ = m(t) + jm̂(t) is an analytic signal
created from the (real) message m(t).

2.3.4 Single tone modulation for SSB

m(t) = Am cos 2πfmt

m̂(t) = Am sin 2πfmt

s(t) =
Ac
2

[m(t) cos 2πfct∓ m̂(t) sin 2πfct]

=
AcAm

2
[cos 2πfmt cos 2πfct∓ sin 2πfmt sin 2πfct]

=
AcAm

2
cos[2π(fc ± fm)t]

using cos(α± β) = cosα cosβ ∓ sinα sinβ.

s(t) is a single tone at frequency fc ± fm.
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2.3.5 SSB-SC in time and frequency domain

m(t)⇔M(f)

s(t)⇔ S(f)

↔M(f − fc)

for f > fc where fc is a positive frequency.

Proof

s(t) =
Ac
2

[m(t) cos 2πfct∓ m̂(t) sin 2πfct]

{
−, USB

+, LSB

M̂(f) =M(f)H(f)

=− jsgn(f)M(f)

S(f) =
Ac
2

[M(f)⊗ 1

2
{δ(f − fc) + δ(f + fc)]

∓ Ac
2

(−jsgn(f))M(f)⊗ 1

2j
{δ(f − fc)− δ(f + fc)}]

S(f) =
Ac
4

[M(f)⊗ δ(f − fc) +M(f)⊗ δ(f + fc)

± sgn(f)M(f)⊗ δ(f − fc)
∓ sgn(f)M(f)⊗ δ(f + fc)]

S(f) =
Ac
4

[M(f − fc) +M(f + fc)

± sgn(f − fc)M(f − fc)∓ sgn(f + fc)M(f + fc)

S(f) =
Ac
2
M(f − fc)

where f − fc > 0, f > fc + Ac
2 M(f + fc), f + fc > 0, f < −fc.

2.3.6 SSB-SC transmitter 1 using Hilbert transform

To create an SSB-SC signal at fc using the SSB-SC equations above, we can:

1. Take the Hilbert transform m̂(t) = m(t)⊗ (1/πt) of the message.

2. Create the analytic signal m̃(t) = m(t) + jm̂(t) for USB or m̃(t) = m(t)− jm̂(t) for LSB

3. Upconvert it to the desired carrier frequency by multiplying by ej2πfct

4. Take the real part.

In GNU Radio, the upconversion to a radio frequency (RF) wave at fc (steps 3 and 4) is the
function of the USRP Sink block. Thus an SSB signal is generated by a USRP sink block (standard
IQ transmitter) with inputs i(t) = m(t) and q(t) = m̂(t) for USB.
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LSB f0 − BW
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2

BW
2

Legend

Figure 2.22: Real block diagram for Weavers modulator.
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carrier f0
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bandwidth BW

f1 f2
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2 −BW

2
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2

BW
2

Real

Complex

Legend

Figure 2.23: Complex block diagram for Weavers modulator.

2.3.7 SSB-SC transmitter 2, avoids Hilbert transform

The Hibert transform can be inconvenient to compute. An SSB-SC signal can be created with-
out using the Hilbert transform with the so-called Weaver modulator. The block diagram of this
modulator in real form is shown in fig. 2.22. The complex form is shown in fig. 2.23.

We will now to an exercise where the signs of the exponentials are chosen for USB.

LO1 operating at f1 is chosen to be in the centre of the band of the message m(t), e.g. f1 =
1500 Hz for a voice bandwidth message 300–2700 Hz.

LO2 operates at fc + f1.

In the figure below, we observe how the multiplying the messsage by the complex exponetials
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Figure 2.24: Stages of a USB Weaver’s modulator

shift the spectrum of the message.

The operations to create the USB signal are as follows:

1. The real message spectrum m(t) is first shifted down by f1 thus making it a complex signal
s̃1(t) with an asymmetrical spectrum.

2. s̃1(t) is low pass filtered to remove the lower sideband resulting in s̃2(t) which is now a complex
signal

3. s̃2(t) is shifted up by fc + f1 resulting in another complex signal related to s(t) with positive
frequencies only.

4. The real part of this signal is selected, or the real and and imaginary parts of this signal are
added together, resulting in a real signal s(t) with positive and negative frequency components.

5. The net result of the two frequency conversions is that the zero frequency component of
m(t)↔M(f) has been shifted up to the suppressed carrier frequency fc and the components
of m(t)↔M(f) above zero frequency (i.e. the message content are shifted to be above fc, i.e.
M(f)→M(f − fc)

The operations to create the USB signal are written mathematically as follows. At the input
there is the message, m(t). After the complex multiply with e−j2πf1t we have

s̃1(t) =m(t)e−j2πf1t

=m(t) cos 2πf1t− jm(t) sin 2πf1t

and after the LPF filter the result, s̃2 is the analytic signal shifted by f1. This does not arise from
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algebra, but is clear from the frequency diagram.

s̃2(t) =[m(t) + jm̂(t)]e−j2πf1t

=m(t) cos 2πf1t− jm(t) sin 2πf1t+ jm̂(t) cos 2πf1t+ m̂(t) sin 2πf1t

After the mixer we have

s̃3(t) =s̃2(t)ej2π(fc+f1)t

=[m(t) + jm̂(t)]e−j2πf1tej2π(fc+f1)t

=[m(t) + jm̂(t)]ej2πfct

=m(t) cos 2πfct− m̂(t) sin 2πfct+ j[m̂(t) cos 2πfct+m(t) sin 2πfct]

=s(t)

as the SSB-SC output USB. We can choose i or q.

Exercise: mathematically show low pass filtering s̃1(t) to get s̃2(t). Hint: write m(t) = [m+(t) +
m−(t)]/2

Exercise: repeat the figure and mathematics for LSB

It is also possible to make a real USB signal by adding the real and imaginary branch outputs
together, adding i+ q not i+ jq. If i and q are added

s(t) =m(t) cos 2πfct− m̂(t)sin2πfct+ m̂(t) cos 2πfct+m(t)sin2πfct

=m(t)[cos 2πfct+ sin 2πfct] + m̂(t)[cos 2πfct− sin 2πfct]

=m(t) cos(2πfct− π/4)/
√

2 + m̂(t) cos(2πfct+ π/4)/
√

2

=m(t) cos(2πfct− π/4)/
√

2 + m̂(t) cos(2πfct− π/4 + π/2)/
√

2

=m(t) cos(2πfct− π/4)/
√

2− m̂(t) sin(2πfct− π/4)/
√

2

thus

s(t) =Re{s̃3(t)e−jπ/4}
=Re{[m(t) + jm̂(t)]ej(2πfct−π/4)/

√
2}

using

cos(α+ π/4) = cosα cos(π/4)− sinα sin(π/4)

=
√

(2)[cosα− sinα]

cos(α− π/4) = cosα cos(π/4) + sinα sin(π/4)

=
√

(2)[cosα+ sinα]

cos(α+ π/2) =− sinα

This completes the discussion of the operations in an SSB-SC transmitter that creates an SSB-SC
signal s(t) = m(t) cos 2πfct∓ m̂(t)sin2πfct with message m(t), where the upper sign is for USB and
the lower sign is for LSB.
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Figure 2.25: Map to transmit AM

2.4 Review of AM, DSB, SSB transmitters in IQ format

In preparation for discussing receivers, we review the AM, DSB, SSB signals in IQ format. Each
transmission method (AM, DSB-SC, SSB, etc) requires its own unique map that serves to form vi(t)
and vq(t) from the message m(t).

2.4.1 Amplitude Modulation:

We already know that s(t) = Ac[1 + kam(t)] cos(2πfct), and for the special case where m(t) =
cos 2πfmt then s(t) = Ac[1+kaAm cos(2πfmt)] cos(2πfct). Since in general s(t) = vi(t) cos(2πfct)−
vq(t) sin(2πfct), to form vi(t) and vq(t) in the IQ transmitter/receiver we see that vi(t) = Ac[1 +
kaAm cos(2πfmt)] and vq(t) = 0. Thus our map must produce such functions.

Recall that vi(t) = a(t) cosψ(t) and vq(t) = a(t) sinψ(t), thus a(t) = Ac[1 + kam(t)] = Ac[1 +
kaAm cos(2πfmt)] and ψ(t) = 0.

We could also choose ψ(t) 6= 0 and write

vi(t) =a(t) cosψ(t) = Ac[1 + kam(t)] cosψ(t)

vq(t) =a(t) sinψ(t) = Ac[1 + kam(t)] sinψ(t)

The value of the phase ψ(t) does not affect the message contained within a(t).

2.4.2 DSB-SC

For a double sideband signal we know that the only difference from the AM case is the lack of carrier
term. Thus with a message m(t) = Am cos 2πfmt the DSB-SC signal is represented by

s(t) =AcAm cos(2πfmt) cos(2πfct)

=
AcAm

2
[cos(2π[fc − fm]t) + cos(2π[fc + fm]t)]
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Figure 2.26: Map to transmit DSB-SC

where we let the constant AcAm represent any scaling that has taken place by way of amplification
or any hardware effects. For DSB-SC, vi(t) = Ac cos(2πfmt) and vq(t) = 0.

2.4.3 SSB-SC

SSB type modulation might be understood as double sideband with one of the sidebands removed.
It would follow that adding something to the double sideband map would be adequate to generate
single sideband signal. We require a transform which when taken of a certain signal, would negate
that signal if the two were added together. We may use, for this purpose, the Hilbert Transform
that shifts all frequencies by 90 degrees.

In general s(t) = m(t) cos 2πfct∓ m̂(t)sin2πfct where the minus sign is for upper sideband and
the plus sign for lower sideband

If m(t) = cos(2πft), then m̂(t) = sin(2πft) where we denote the Hilbert transform by the hat ∧
symbol, and

s(t) = cos 2πfmt cos 2πfct∓ sin 2πfmt sin 2πfct

= cos 2π(fc ± fm)t

Thus the map for SSB is vi(t) = m(t) and vq(t) = m̂(t). For a single tone message m(t) =
Amcos2πfmt, vi(t) = cos(2πfmt) and vq(t) = sin(2πfmt). The constant Ac accounts for the signal
power.
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Figure 2.27: Map to transmit SSB-SC



Chapter 3

Amplitude modulation (AM)
receivers

The purpose of a receiver is to extract or recover the message m(t) from the modulated wave s(t).
There exist many different kinds of receiver structures and designs. Digital and analog methods are
used, each having a specific structure that is unique to the method of modulation used. (We shall
focus here on AM, DSB, and SSB).

3.1 Analog AM receiver

Analog demodulation of the received AM wave (shown in eq. (3.1) scaled by the path loss L0) can be
achieved via an envelope detector made from analog circuit components. The envelope represents
the modulating message wave. The envelope detector extracts the message through the use of a
rectifying diode and a RC lowpass filter with cutoff frequency chosen so that the high frequency
carrier term at fc is removed while the message with lower frequency fm plus a DC term remains.
A series capacitor is used to remove the DC.

r(t) =
s(t)

L0

=
a(t)

L0
cos(2πfct+ φ)

=
Ac
L0

[1 + kam(t)] cos(2πfct+ φ)

(3.1)

Mathematically speaking, the analog envelope detector finds the magnitude of the complex en-
velope of s(t). Figure 3.1 shows the waveform as it exists at different points in the circuit.

Exercise: do the mathematics to show that if s(t) is the input to the envelope detector circuit with
rectifier and low pass filter s(t) then the output of the circuit is the magnitude of the complex
envelope of s(t).

83
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Figure 3.1: AM envelope detector with waveforms shown at each stage.

Figure 3.2: Demodulation principles block diagram

Exercise: write expressions for the signal at the input to the diode, at the output of the diode before
the low pass filter, and at the output of the low pass filter.

3.2 Digital software receivers

Figure 3.2 is a representation of the main principles involved in demodulating an AM signal using a
digital architecture.

3.2.1 Digital software AM receiver in complex notation

The transmitted AM signal is of the form:

s(t) =a(t) cos(2πfct+ φ)

=Ac[1 + kam(t)] cos(2πfct+ φ)

where φt is a constant phase.
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The received AM signal r(t) = s(t)/L0 will in general have a different phase φr so that

r(t) =a(t) cos(2πfct+ φr)

=Ac[1 + kam(t)] cos(2πfct+ φr)

We have assumed L0 = 1 for convenience so that r(t) = s(t) and write φ = φr. In practice,
L0 ' 10−4 to 10−6 so that the received signal is only a few microvolts. The preamplifier stage with
voltage gain up to 106 is needed to restore r(t) to a level that is suitable for the ADC (typically a
few volts).

The AM receiver recovers m(t) from s(t). One method is to recover the magnitude of the complex
envelope a(t) = 1 + kam(t) and subtract the DC component to obtain m(t).

To show how this is done in software with the USRP and GNU Radio Companion (GRC), recall
that the USRP source block has a complex output with real and imaginary components i(t) and
q(t).

In what follows we assume L0 = 1 so that r(t) = s(t). We can write the AM signal s(t) as the
real part of a complex signal:

s(t) =Re[a(t)ejφej2πfct]

=Re[s̃(t)ej2πfct]

where the complex envelope

s̃(t) =a(t)ejφ

=a(t) cosφ+ ja(t) sinφ

=i(t) + jq(t)

Thus the USRP source block with frequency set to fc will have outputs:

i(t)a(t) cosφ

q(t) = a(t) sinφ

To obtain a(t), we take the magnitude of the complex envelope s̃(t). Thus we can write:

|s̃(t)| =|i(t) + jq(t)|
=|a(t) cosφ+ ja(t) sinφ|
=a(t)| cosφ+ j sinφ|

=a(t)

√
cos2 φ+ sin2 φ

=a(t)

This shows that we can recover a (t) = 1 + kam(t) regardless of the value of φ. The GRC Complex
to Magnitude block allows us to obtain the magnitude of the complex envelope by performing the
function a(t) = |i(t) + jq(t)|.

If there is frequency offset, then φ = 2π∆ft, but as we have just seen, |s̃(t)| = a(t) is not affected
by the value of φ and thus not affected by any time variation in φ caused by a frequency offset ∆f ,
provided that s(t) is within the filter bandwidth of the receiver.

Exercise: write an expression for s(t) and s̃(t) with a frequency offset.
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Figure 3.3: Downmixing

3.2.2 Tuning in (selecting) one particular AM signal with the USRP

The USRP multiplies the real valued radio frequency signal s(t) by e−j2πfct to generate i(t) + jq(t).
This process is called complex downmixing and is equivalent to the standard IQ receiver shown in
fig. 1.9.

Recall the AM spectrum

S(f) =
Ac
2

[δ(f − fc) + δ(f + fc)] +
Acka

2
[M(f − fc) +M(f + fc)] (3.2)

The spectrum S(f) of the real radio frequency (RF) signal s(t) is symmetric about zero. The
complex downmixing shifts the frequency of S(f) down by fc.

s(t)↔ S(f)

e−j2πfcts(t)↔ S(f + fc)

Exercise: write an expression for S(f + fc), and show that one of the terms needs to be filtered out.

Answer : The shifted AM spectrum is

S(f + fc) =
Ac
2

[δ(f) + δ(f + 2fc)] +
Acka

2
[M(f) +M(f + 2fc)] (3.3)

After complex downmixing, the resulting signal is complex and the frequency spectrum S(f + fc) is
no longer symmetric about zero. The terms at −2fc are filtered out, leaving only the message plus
a DC component.

The complex signal output from the USRP source block i(t)+jq(t) is bandlimited to the sampling
rate of the USRP source block. The USRP source block output can be recorded to a file and used
again at a later time. This file source will have the same sampling rate and bandwidth as the USRP
sink block used to record it.

With a sampling rate of 256 kHz and complex samples, the bandwidth will be 256 kHz (because
the complex signal spectrum is not symmetric and does not have redundant mirror-image positive
and negative frequencies).

The AM aircraft band 108–137 MHz is divided into 25 kHz channels. With a file source sampled
at 256 kHz, there can be as many as 10 different AM aircraft signals.
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The AM aircraft signal with carrier frequency fc = fd (fd is set in the USRP source block) will
appear at 0 Hz after the downconversion (at the USRP source output). Other signals at carrier
frequencies fc ± nf0 kHz will appear at multiples of f0 = 25 Hz away from 0 Hz.

We need to create a filter to select the one signal we want (the one with carrier frequency fc that
now appears at 0 Hz). A low pass filter with 12.5 kHz cutoff frequency will do the job, since all the
other signals are centered at frequencies at least 25 kHz away from 0 Hz.

To “tune in” (receive) one of the other signals, we can shift the spectrum of the USRP source
output by nf0 kHz by multiplying the complex signal i(t) + jq(t) by e−j2πnf0t = cos 2πnf0t −
j sin 2πnf0t, so that the signal that first appeared at nf0 Hz now appears at 0 Hz.

Exact tuning is not required, since a frequency offset ∆f results in a changing phase φ(t) = 2π∆ft
that does not affect the AM demodulation process.

3.3 DSB-SC receiver

Recall this time that a DSB wave is comprised of only the two (redundant) message frequency bands
(the carrier has been filtered out before transmission):

s (t) =m (t) c (t)

=m (t) cos (2πfct)
(3.4)

The modulated double sideband signal has no carrier frequency and therefore exhibits a periodic
phase reversal which makes the simple envelope detector described previously inadequate for demod-
ulation (the rectifying diode will leave us with a rectified version of the envelope: received envelope
= |m(t)|).

How to properly receive m(t) from s(t) for a DSB-SC signal? One general method may be
understood by observing the result of multiplying the modulated wave s(t) by the carrier frequency,
c(t) (fig. 3.4). Let r(t) represent the received signal within the receiver structure.

r(t =s(t)c(t)

=m(t)c(t)c(t)

=m(t) cos2(2πfct)

=m(t)[
1

2
(1 + cos 4πfct)]

=
1

2
m(t) +

1

2
cos 4πfct

Thus we have created a signal comprised of a high frequency term (a DSB signal and an amplitude
scaled version of our message. All that must be done to extract m(t) from the signal is to apply a
lowpass filter to the signal: rLP (t) = 1

2m(t) (fig. 3.5).

This method, however effective, requires the party operating the receiver to know the exact
carrier frequency, fc and the phase of the carrier wave. Both instances of the carrier wave (that used
here at the receiver and that which is used initially in the modulation process at the transmitter)
must both have exactly the same phase and frequency.
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Figure 3.4: DSB receiver first step

Figure 3.5: Production of Signal x(t) with LPF
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3.3.1 DSB receiver with frequency and phase offset

When the frequency and phase are not exactly the same, the error terms (frequency error ∆f and
phase shift φ) may be represented by ψ = 2π∆ft+ φ. Using the appropriate trig identities, we now
may write the received signal before the low pass filter

r(t) =m(t) cos(2πfct) cos[2πfct+ 2π(∆f)t+ φ]

=m(t) cos(2πfct) cos[2πfct+ ψ]

=m(t) cos(2πfct)[cos(2πfct) cosψ − sin(2πfct) sinψ]

=m(t) cos2(2πfct) cosψ −m(t) cos(2πfct) sin(2πfct) sinψ

=
m(t)

2
[1 + cos(4πfct)] cosψ − m(t)

2
sin(4πfct) sinψ

Thus a more general resultant signal is attained when we take into account the possibility of
frequency error and phase shift in the local oscillator that provides the receiver’s version of c(t).
After lowpass filtering this signal, we achieve the following result:

rLP (t) =
m (t)

2
cos(ψ) (3.5)

So if ψ = 0 then we get the ideal case where cosψ = 1 and the output of the LPF is a scaled
version of the message. If, however ψ 6= 0 then get above LPF output where the message is multiplied
by the cosine of the error term.

Various values of ψ lead to different effects on the extracted message shown in table 3.1.

Specific details of ψ Effect on rLP (t)

ψ = 2π∆ft+ φ rLP (t) = m(t)
2 cos(2π∆ft+ φ)

Message will be scaled and will be distorted

∆f = 0
ψ = φ = constant

r(t) = km(t)
2 where k = cosφ is a scaling factor

Message can be recovered

φ = 0, ψ = 2π∆ft r(t) = m(t)
2 cos(2π∆ft)

Message will include distortion

ψ = 0 rLP (t) = m(t)
2

Exact message is readily recoverable

Table 3.1: Effect of various ψ values on rLP (t)

The distorted signals can be interpreted by considering the frequency error cosine term cos 2π∆ft
to be a sort of low frequency “carrier”, where typically ∆f = 100 Hz.

Assuming m(t) = cos 2πfmt, with typical fm = 1000 Hz the receiver output

r(t) =m(t) cos 2π∆ft = cos 2πfmt cos 2π∆ft

=0.5 cos 2π(fm + ∆f)t+ 0.5 cos 2π(fm −∆f)t

has outputs with frequencies at fm+∆f and fm−∆f , so the message at frequency fm now appears
in two places, at fm−∆f and ∆f + fm. For our example, with frequency error 100 Hz, the message
at 1000 Hz now appears at 900 and 1100 Hz.
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We may extract the true message frequency only if we know the exact carrier frequency. Typical
error ratios compared to carrier frequency (∆f

fc
) are as follows: a factor of 10−4 for cheap equipment,

10−6 for a good crystal oscillator, 10−11 for a Rubidium oscillator, and approaching 10−13 with GPS
discipline (control).

Later we will see a method whereby a DSB-SC receiver can find the frequency error and eliminate
it.

3.3.2 Review of I-Q receivers

Here we review the general I-Q receiver configuration that may be implemented for all types of
signals The receiver for every type (for AM, DSB-SC, SSB) consists of a standard configuration
coupled with a “map” that is specific to the transmission type.

s(t) =a(t) cos[2πfct+ ψ(t)]

=a(t)[cos(2πfct) cosψ(t)− sin(2πfct) sinψ(t)]

=a(t) cosψ(t)cos2πfct− a(t) sinψ(t) sin 2πfct

=vi(t)cos2πfct− vq(t) sin 2πfct

where a(t) is the amplitude and ψ(t) is the phase. The coefficients of the carrier waves in the
transmitter are referred to as vi(t) and vq(t) respectively, where

vi(t) = a(t) cosψ(t)

vq(t) = a(t) sinψ(t)

These signals are formed by the map and used to create s(t) at the IQ Transmitter.

s(t) = vi(t) cos(2πfct)− vq(t) sin(2πfct)

The IQ Receiver multiplies the incoming signal s(t) by two versions of the carrier wave functions:
cos(2πfct) and the 90 degree phase-shifted version sin(2πfct).

Recall the DSB-SC receiver (fig. 3.4) uses only one version of the carrier wave and thus has a
single cosine oscillator.

The general I-Q receiver has two oscillators, cos and sin as shown in fig. 3.7.

3.3.3 Review of AM, DSB, SSB receivers in IQ format

The receiver must determine a best guess of the information stored in the signals vi(t) and vq(t).
The generic IQ receiver architecture produces x(t) and y(t) by multiplying the received signal s(t) by
local carriers cos 2πfc and sin 2πfct. The algebra describing the production of these signals assuming
no frequency error appears below. We will use the identities

cosα cosβ = [cos(α− β) + cos(α+ β)]/2

cos2 α = [1 + cos(2α)]/2

sinα sinβ = [cos(α− β)− cos(α+ β)]/2

sinα cosβ = [sin(α− β) + sin(α+ β)]/2
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Figure 3.6: General IQ Transmitter

Figure 3.7: General IQ Receiver
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For x(t), before the LPF we have,

s(t) cos 2πfct =[vi(t) cos(2πfct)− vq(t) sin(2πfct)] cos(2πfct)

=vi(t) cos2(2πfct)− vq(t) sin(2πfct) cos(2πfct)

=
vi(t)

2
[1 + cos(2π[2fc]t)]−

vq(t)

2
sin(2π[2fc]t)

=
vi(t)

2
+
vi(t)

2
cos(2π[2fc]t)−

vq(t)

2
sin(2π[2fc]t)

Recall vi(t) and vq(t) are formed from the message frequency only, so of their frequency components
are at or near fm. The expression vi(t) cos[2π(2fc)t] results in two terms at the sum and difference
frequencies (2fc ± fm), both of which are near double the carrier frequency. The same can be said
of vq(t) sin[2π(2fc)t]. Thus after the LPF is applied to s(t) cos 2πfct the only remaining term will

be x(t) = vi(t)
2 .

Similarly for y(t), before the LPF we have,

s(t) sin 2πfct =[vi(t) cos(2πfct)− vq(t) sin(2πfct)] sin(2πfct)

=vi(t) sin(2πfct) cos(2πfct)− vq(t) sin2(2πfct)

=
vi(t)

2
sin(2π[2fc]t)−

vq(t)

2
+
vq(t)

2
cos(2π[2fc]t)

And after the LPF we end up with y(t) =
vq(t)

2 .

We often write that the IQ receiver output x(t) = vi and y(t) = vq(t), thus neglecting the scaling
factor 1

2 , since this scaling factor in real hardware will depend on the gains of the amplifiers.

The receiver will still work in the case where ψ = 2π∆ft + φ 6= 0 as long as the oscillator that
produces the signals cos 2πfct and sin2πfct is corrected such that its frequency mirrors the error
(a voltage controlled oscillator, VCO, outputs at frequency 2π(fc + ∆f)t + φ so that the apparent
carrier frequency received is the same as that which is used in demodulation).

When we include the possibility of frequency error so to represent the most general case, the
incoming signal can be represented by s(t) = vi(t) cos(2π[fc+∆f ]t+φ)−vq(t) sin(2π[fc+∆f ]t+φ).

3.4 Mapping from IQ receiver output to message signal

Each modulation method (AM, DSB-SC, SSB, etc) requires its own unique map that serves to
extract the message m(t) from x(t) and y(t). The maps for receiving m(t) from these signals for
different transmission types are outlined below.
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Figure 3.8: Map to receive AM

3.4.1 AM receiver

Recall for AM

x(t) =vi(t)

=a(t) cosψ(t)

=Ac[1 + kam(t)] cosψ(t)

y(t) =vq(t)

=a(t) sinψ(t)

=Ac[1 + kam(t)] sinψ(t)

The AM receiver map extracts m(t) by first obtaining a(t) = Ac[1 + kam(t)], removing the DC
component and scaling the signal by 1/ka. a(t) is obtained from

a(t) =
√
x2(t) + y2(t))

since

√
x2(t) + y2(t) =

√
a2(t)cos2ψ(t) + a2(t)sin2ψ(t)

= a(t)

regardless of the value of ψ(t) = 2π∆ft+φ. Thus an AM receiver will function even with a frequency
error ∆f

3.4.2 DSB-SC receiver with frequency error correction

Recall for DSB-SC, vi(t) = m(t), vq(t) = 0. For the case where m(t) = Accos2πfct, vi(t) =
Ac cos(2πfmt) and vq(t) = 0.

The demodulating carrier frequency must be controlled to correct for the possibility of frequency
error ∆fs uch that ψ = 2π∆ft. With a frequency error ∆f , the incoming transmitted wave is of
the form:

s(t) = vi(t) cos(2π[fc + ∆f ]t)− vq(t) sin(2π[fc + ∆f ]t).
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For DSB-SC with a single tone message m(t) = cos(2πfmt) we have vi(t) = Ac cos(2πfmt) and
vq(t) = 0. Thus

s(t) =vi(t) cos(2πfct+ 2π∆ft)

=Ac cos 2πfmt cos 2π(fc + ∆f)t

=Ac cos 2π[(fc + ∆f) + fm]t+ cos 2π[(fc + ∆f)− fm]t

To find x(t): before the LPF,

s(t) cos 2πfct =Ac cos(2πfmt) cos 2π(fc + ∆f)t cos(2πfct)

=
Ac
2

[cos 2π[(fc + ∆f) + fm]t+ cos 2π[(fc + ∆f)− fm]t] cos 2πfct

=
Ac
4

[cos(2π[(2fc + ∆f) + fm]t) + cos(2π[fm + ∆f ]t)

+ cos(2π[fm − (∆f)]t) + cos(2π[(2fc + ∆f)− fm]t)]

while after the LPF we have,

x(t) =
Ac
4

[cos(2π[fm + ∆f ]t) + cos(2π[fm −∆f ]t)]

For a general message m(t), we find x(t) = 1
2m(t) cos 2π∆ft.

Similarly for y(t): before the LPF,

s(t) sin 2πfct =Ac cos 2πfmt cos 2π(fc + ∆f)t sin 2πfct

=
Ac
2

[cos(2π[fm + (fc + ∆f)]t) + cos(2π[fm − (fc + ∆f)]t)] sin(2πfct)]

=
Ac
4

[sin(2π[fm + (2fc + ∆f)]t)− sin(2π[fm + (∆f)]t)

+ sin(2π[fm − (∆f)]t)− sin(2π[fm − (2fc + ∆f)]t)]

while after the LPF we have,

y(t) =
Ac
4

[− sin(2π[fm + (∆f)]t) + sin(2π[fm − (∆f)]t)]

For a general message m(t), we find y(t) = 1
2m(t) sin 2π∆ft.

The received signals are distorted by the frequency offset. The DBS-SC receiver does not in-
herently know the frequency error but it manipulates the signals x(t) and y(t) to acquire it. We
multiply x(t) and y(t) together and produce the following control signal for the VCO.
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Using sinα cosα = (1/2) sin 2α

e(t) =x(t)y(t)

=
A2
c

16
[− sin(2π[fm + (∆f)]t) + sin(2π[fm − (∆f)]t)]

× [cos(2π[fm + (∆f)]t) + cos(2π[fm − (∆f)]t)]

=
A2
c

32
[− sin(4π[fm + ∆f ]t)− sin(4πfmt)− sin(4π∆ft)

+ sin(4πfmt) + sin(−4π∆ft) + sin(4π[fm −∆f ]t)

=
A2
c

32
[−2 sin(4π∆ft)]

=− A2
c

16
sin(4π∆ft)

For a general message m(t)

e(t) =x(t)y(t)

=
1

4
m2(t) cos 2π∆ft sin 2π∆ft

=
1

8
m2(t) sin 4π∆ft

Typical values of fm are 300–3000 Hz for voice, whereas a typical value for ∆f is 100 Hz or less.
e(t) is low pass filtered with a cutoff frequency less than 300 Hz so that all frequency components
fm of m(t) are filtered out. Thus after the low pass filter, eLPF (t) = 1

8 < m2(t) > sin 4π∆ft where
< m2(t) > is a DC value representing the average power in m(t). Thus even without knowing the
error frequency ∆f , we can produced a sinusoid, directly dependant on ∆f . This allows us to control
the frequency for the local oscillator at the receiver to replicate the incoming carrier frequency. In
the special case where

m(t) = Ac cos 2πfmt

m2(t) =
A2
c

2
+
A2
c

2
cos 4πfmt

< m2(t) > =
A2
c

2

eLPF (t) =
1

8
< m2(t) > sin 4π∆ft

=
A2
c

16
sin4π∆t

The above analysis can be repeated using a general message m(t) and a general offset ψ =
2π∆ft+ φ 6= 0.

3.4.3 SSB-SC receiver using message-bandwidth low pass filters

We consider two methods of receiving an SSB-SC signal using low pass filters with cutoff frequency
equal to the bandwidth B of the message signal. For a single tone message, we choose fm = B.
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Figure 3.9: Map to receive DSB-SC

In Method 1, we multiply the real SSB signal by cos 2πfct and low pass filter to get m(t). This
method is used in analog receivers. To demodulate SSB-SC, the receiver is required to know the
exact carrier frequency for proper demodulation.

Exercise: show the mathematical steps to obtain m(t) from s(t) using this method.

In method 2, we use an IQ receiver. For an SSB-SC signal s(t) = m(t) cos 2πfct∓m(t) sin 2πfct
with − for USB and + for LSB. Considering the single tone message m(t) = Ac cos 2πfmt, for

• LSB we write s(t) = Ac cos(2π[fc − fm]t),

• USB we write s(t) = Ac cos(2π[fc + fm]t)).

For USB, the IQ receiver output

x(t) =Ac cos 2π(fc + fm)t cos 2πfct

=
Ac
2

[cos 2π(2fc + fm)t+ cos 2πfmt]

y(t) =Ac cos 2π(fc + fmt sin 2πfct

=
Ac
2

[sin 2π(2fc + fm)t− sin 2πfmt]

comes

x(t) =
Ac
2

cos 2πfmt

and

y(t) =
Ac
2

sin 2πfmt

after the LPF output. In both cases, an LPF leaves us with the message (cosine term) and a phase
shifted version (sine term). We simply choose the signal in x(t) and further demodulation only
serves to scale the amplitude of the message.

Exercise: repeat this calculation with a small frequency offset ∆f .

The problem with this method is that if there is another signal present where the other (opposite)
sideband would have been if we were using DSB or AM instead of SSB, then that signal will also be
demodulated and will interfere with the desired message.
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Figure 3.10: Map to receive SSB-SC

Exercise: show that this is true for the USB signal sUSB(t) = Ac cos(2π[fc+fm]t) with an interfering
signal sint(t) = Ac cos(2π[fc − fm]t).

3.4.4 SSB-SC receiver using Weaver Demodulator description

A third method of receiving SSB-SC uses the Weaver demodulator which is analogous to the Weaver
modulator discussed earlier.

The Weaver demodulator uses a low pass filter with cutoff at B/2 (half the message bandwidth)
compared to the full message bandwidth low pass filter B used in the previous section above.

The Weaver demodulator operates in several steps, shown below in complex notation for the
USB case. We assume the message occupies a bandwidth of 0–3000 Hz.

s(t)→ ⊗⇒ LPF (f1)⇒ ⊗⇒→ m(t)
⇑ s̃1(t) s̃2(t) ⇑ s̃3(t)

e−j2π(f0+f1)t ej2πf1t

1. downconvert the real USB signal s(t) = m(t) cos 2πfct−m(t) sin 2πfct to s̃1(t) using a complex
local oscillator ej2π(fc+f1)t with a frequency offset f1 = 1.5 kHz relative to f0 = fc = 53 kHz as
shown in the figure below. We choose f1 = B/2 to be a frequency in the approximate middle
of the message bandwidth, e.g. 1500 Hz for a 0–3000 Hz voice signal.
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2.

3. Low pass filter the result to eliminate adjacent undesired signals. The resulting signal s̃2(t)
is a complex signal with asymmetric spectrum in the frequency range −B/2 to B/2 or −1.5–
1.5 kHz.

4.

5. Do a frequency shift of s̃2(t) with a complex local oscillator ej2πf1t where f1 = B/2 = 1.5 kHz
as defined above, resulting in s̃3(t) in the frequency range 0 to B or 0–3000 Hz. s̃3(t) is an
analytic signal with positive frequencies only.

6. Take the real part of s̃3(t) to obtain the real signal m(t) with both positive and negative
frequencies that can be listened to or decoded correctly.

7. The net result of the two frequency shifts and LPF in the Weaveer demodulator is that the
suppressed carrier frequency in s(t) is shifted to zero frequency, the message is recovered and
all other unwanted signals are filtered out.

The problem with the interfering signal mentioned in the previous section does not arise for the
Weaver demodulator because the LPF bandwidth is B/2 instead of B.

The Weaver demodulator also works for Morse code or other digital signals that are processed
by ear or other decoder that operates on a real (not complex) signal. In this case, the bandwidth B
may be set to an appropriate value (e.g. 50 Hz for Morse code) and the frequency offset f1 is set to
a tone (pitch) that is pleasant to the ear (e.g. 400 Hz).

The operations of a Weaver demodulator can also be shown in real notation as shown in fig. 3.11.

3.4.5 SSB-SC Weaver demodulator operation in complex notation

We consider two cases for the input signal, real and complex

The mathematics below is for a real input signal that arises when the signal is taken directly
from antenna and preamp and (perhaps) an analog real downconverter stage (cos oscillator only).
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Figure 3.11: Real SSB receiver

At the input we have

s(t) =Re{s̃(t)ej2πfct}
= m(t) cos 2πfct−m(t)sin2πfct

where s̃(t) = m(t) + jm(t). After the first mixer we have

s̃1(t) =[m(t) cos 2πfct−m(t)sin2πfct]e
−j2π(fc+f1)t

=0.5[m(t)ej2πfct +m(t)e−j2πfct + jm(t)ej2πfct − jm(t)e−j2πfct]e−j2π(fc+f1)t

=0.5[m(t)e−2πf1t +m(t)e−j4π(fc+f1)t + jm(t)e−j2πf1t − jm(t)e−j4π(fc+f1)t].

After the LPF the analytic signal must be shifted

s̃2(t) =m(t)e−2πf1t + jm(t)e−j2πf1t

=[m(t) + jm(t)]e−j2πf1t

and after the second mixer we have

s̃3(t) =s̃2(t)ej2πf1t

s̃(t) =m(t) + jm(t)

m(t) =Re{s̃(t)}

Exercise: mathematically show low pass filtering s̃1(t) to get s̃2(t). Hint: write m(t) = [m+(t) +
m−(t)]/2.

Exercise: repeat the figure and mathematics for LSB.

The mathematics below is for a complex input that arises when a complex downconversion (e.g.
cos and sin oscillators in an analog mixer with two outputs I and Q) has taken place ahead of the
USB receiver. There is a complex input

s̃(t)ej2πfct = m(t) cos 2πfct−m(t)sin2πfct+ j[m(t) cos 2πfct+m(t)sin2πfct]

where s̃(t) = m(t) + jm(t). After the first mixer we have

s̃1(t) =s̃(t)ej2πfcte−j2π(fc+f1)t

=s̃(t)e−j2πf1t.
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After the LPF eliminats other unwanted signals s̃2(t) = s̃1(t). After the second mixer we have

s̃3(t) =s̃2(t)ej2πf1t

=s̃(t)e−j2πf1tej2πf1t

=s̃(t)

=m(t) + jm(t)

m(t) =Re{s̃(t)}

3.4.6 SSB-SC Weaver demodulator operation in real notation

The real version of the Weaver demodulator can be built entirely in analog, or entirely in digital. It
may also be split, with the first cos/sin mixer in analog (as done in the USRP daugtherboard) and
the second mixer digital (implemented in GNURadio software).

In fig. 3.11, for USB, the first oscillator is f0 +B/2.

The mathematics for the Weaver demodulator in real notation is done in the example below,
assuming that the message is the sum of cos waves at 500 Hz and 2000 Hz. This example should give
an appreciation of the value of complex signals to simply both the concepts and the algebra.

Recall

cosα cosβ = [cos(α− β) + cos(α+ β)]/2

sinα cosβ = [sin(α− β) + sin(α+ β)]/2

sinα sinβ = [cos(α− β)− cos(α+ β)]/2

cosα sinβ = [− sin(α− β) + sin(α+ β)]/2

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ

The message is

m(t) = cos 2πf2t+ cos 2πf3t

= cos 2π500t+ cos 2π2000t

For a real SSB signal (upper sideband)

s(t) =m(t) cos 2πfct−m(t)sin2πfct

=[cos 2πf2t+ cos 2πf3t] cos 2πfct− [sin 2πf2t+ sin 2πf3t] sin 2πfct

= cos 2πf2t cos 2πfct− sin 2πf2t sin 2πfct+ cos 2πf3t cos 2πfct− sin 2πf3t sin 2πfct

= cos 2π(f2 + fc)t+ cos 2π(f3 + fc)t

Writing f0 = fc yields
s(t) = cos 2π(f2 + f0)t+ cos 2π(f3 + f0)t.

The first oscillator is at f0 +B2 for upper sideband. The upper branch after the first mixer and low
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pass filter but before the second mixer has B2 = B/2 = f1 and

s(t) cos 2π(f0 +B2)t =0.5[cos 2π(f2 + f0)t+ cos 2π(f3 + f0)t] cos 2π(f0 +B2)t

=0.5[cos 2π(f2 −B2)t+ cos 2π(f3 −B2)t]

=0.5[cos 2π(500− 1500)t+ cos 2π(2000− 1500)t]

=0.5[cos 2π(−1000)t+ cos 2π(500)t]

The upper branch after the second mixer is described by

0.5[cos 2π(f2 −B2)t+ cos 2π(f3 −B2)t] cos 2πB2t

= 0.25[cos 2πf2t+ cos 2π(f2 − 2B2)t+ cos 2πf3t+ cos 2π(f3 − 2B2)t]

= 0.25[cos 2π(500)t+ cos 2π(500− 3000)t+ cos 2π(2000)t+ cos 2π(2000− 3000)t]

= 0.25[cos 2π(500)t+ cos 2π(−2500)t+ cos 2π(2000)t+ cos 2π(−1000)t]

The lower branch after the first mixer and low pass filter but before second mixer is descibed by

s(t)[− sin 2π(f0 +B2)t] =− [cos 2π(f2 + f0)t+ cos 2π(f3 + f0)t] sin 2π(f0 +B2)t

=− 0.5[cos 2π(f2 + f0)t sin 2π(f0 +B2)t

− cos 2π(f3 + f0)t sin 2π(f0 +B2)t]

=0.5[sin 2π(f2 −B2)t+ sin 2π(f3 −B2)t]

=0.5[sin 2π(500− 1500)t+ sin 2π(2000− 1500)t]

=0.5[sin 2π(−1000)t+ sin 2π(500)t]

The lower branch after second mixer is descibed by

0.5[sin 2π(f2 −B2)t+ sin 2π(f3 −B2)t][− sin 2πB2t]

= 0.25[− cos 2π(f2 − 2B2)t+ cos 2πf2t− cos 2π(f3 − 2B2)t+ cos 2πf3t]

= 0.25[− cos 2π(500− 3000)t+ cos 2π(500)t− cos 2π(2000− 3000)t+ cos 2π(2000)t]

= 0.25[− cos 2π(−2500)t+ cos 2π(500)t− cos 2π(−1000)t+ cos 2π(2000)t]

Then the sum of the second mixer outputs is

0.5[cos 2πf2t+ cos 2πf3t] =0.5[cos 2π(500)t+ cos2π(2000)t]

=0.5m(t)



Chapter 4

Super-heterodyne Receiver

Before a transmission signal is inputted into an IQ receiver, it is often advantageous to apply
amplification as the typical amplitude range at this point is on the order of microvolts. A far more
practical signal level to work with is one on the order of Volts and such a gain is usually achieved
through a series of op amps. Such a large gain requirement around a single carrier frequency can
raise practical issues such as the occurrence of feedback due to the high nature of the frequencies
needing to be amplified.

A super-heterodyne (or colloquially: superhet) receiver offers a means of overcoming such issues
by shifting the carrier (usually down in magnitude) and effectively splitting the gain requirements
over multiple frequencies: the original carrier and what is referred to as the intermediate frequency
(fIF ). This action helps to prevent feedback which may lead to inaccuracies in the demodulated
message.

Another advantage of using the superhet design is that it allows the receiver to shift any carrier
frequency to an industry standard. This allows the components of the standardized IQ receiver to be
mass produced at a very low cost. Amplifiers that support higher frequencies tend to have a narrower
bandwidth as well so by shifting the carrier we also remove this limitation. The architecture of the
super-heterodyne is shown in fig. 4.1.

Figure 4.1: Super-heterodyne Receiver
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The receiver is tuned to receive different carrier frequencies by changing the frequency of the
so-called Local Oscillator (as distinct from the Remote oscillator in the transmitter some distance
away from the receiver). The tuning knob on a radio receiver controls the frequency of the Local
Oscillator. A common intermediate frequency used for AM receivers is 455 kHz. Once fIF is selected,
we may decide how to tune the local oscillator so to produce such a carrier:

fLO = fc ± fIF

With the local oscillator tuned to this frequency we get the following pair: fc + (fc ± fIF ) =
2fc ± fIF and fc − (fc ± fIF ) = ∓fIF . We can easily bandpass filter the high frequency term out
meaning we have successfully shifted our carrier to a desired intermediate frequency.

An issue with the super-heterodyne receiver which is important to note is the existence of an
“image” frequency (fIM ). If a signal exists at this frequency and proper filtering is not implemented
then it will be shifted to the intermediate frequency, along with the signal at the desired fc, and will
cause direct interference.

If fLO = fc±fIF then fIM = fLO±fIF . It is often best to consider specific numbers rather than
formulas with plus/minus signs. For example, consider fRF = fc = 1070 kHz and fIF = 455 kHz.

Then we can choose fLO = 1070− 455 = 615 kHz, so that the incoming signal at 1070 kHz mixes
with the LO at 615 kHz to yield an output at the 455 kHz IF. Thus by setting the LO to 615 kHz
we have “tuned in” the signal at 1070 kHz.

The image frequency will be 615 − 455 = 160 kHz, since an incoming (image) signal at 160 kHz
can also mix with the same LO at 615 kHz to yield an output at the 455 kHz IF.

We can also choose fLO = 1070 + 455 = 1525 kHz, so that the incoming signal at 1070 kHz mixes
with the LO at 1525 kHz to yield an output at the 455 kHz IF. Thus by setting the LO to 1525 kHz
we have “tuned in” the signal at 1070 kHz.

In this case, the image frequency will be 1525+455 = 1980 kHz, since an incoming (image) signal
at 1980 kHz can also mix with the same LO at 1525 kHz to yield an output at the 455 kHz IF.

The superheterodyne principle can also be applied to complex signals. For example, in the
USRP, the daughterboard is a complex local oscillator that downconverts a slice of radio frequencies
centered around fLO to a zero frequency IF complex baseband signal (with asymmetrical spectrum).
This signal is sampled by the main USRP board.
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Figure 4.2: USRP diagram



Chapter 5

Frequency Modulation

5.1 Overview

In this chapter, we describe angle modulation, which includes both frequency and phase modulation.
In both cases, amplitude is kept constant.

The phase angle of the carrier wave varies with the message signal.

For phase modulation, the phase angle is linearly related to the message

For frequency modulation (FM), the derivative of the phase angle is linearly related to the message.

FM and PM signals have a constant amplitude or constant envelope, thus enabling the use of power-
efficient nonlinear power amplifiers.

FM signals are more resistant to noise than AM, but at the cost of larger bandwidth.

FM is widely used for radio broadcasting, analog TV audio and public safety two-way radios.

The figure below compares AM and FM
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5.2 FM with General Message

To derive the equation for an FM wave, we have 3 starting points:

1. Recall that idea of AM is that the instantaneous amplitude a(t) of a carrier wave is varied
linearly with the baseband message signal m(t) around a constant bias value Ac so that a(t) =
Ac +Ackam(t)

1. By analogy, the idea of frequency modulation is that the instantaneous frequencyfi(t) of a
carrier wave is varied linearly with the baseband message signal m(t)around a constant value
fc Thus for a general message m(t) the idea of FM is:

fi(t) = fc + kfm(t)

where the constant kf represents the frequency sensitivity of the modulator, expressed in hertz per
volt.

1. Recall that a general signal is written:

s(t) = a(t) cos θ(t) = a(t)cos[2πfct+ φ(t)]

where θ(t) = 2πfct+ φ(t)has a linear variation at rate fcand a time varying part φ(t)

1. Recall the instantaneous frequency of a signal is:

fi(t) =
1

2π

dθ(t)

dt
= fc +

1

2π

dφ(t)

dt
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Combining these 3 starting points, we can write:

θ(t) = 2π
∫ t

0
fi(α)dα = 2π ∫ t0[fc + kfm(α)]dα

= 2πfct+ kf
∫ t

0
m(α)dα

s(t) = Ac cos

[
2πfct+ 2πkf

∫ t

0

m(α)dα

]

The FM signal s(t)can be written in standard IQ format:

s(t) = i(t) cos 2πfct− q(t)sin2πfct

s(t) = Re{a(t)ejφ(t)ej2πfct} =
Re{[I(t) + jQ(t)][cos 2πfct+ jsin2πfct]}
= I(t) cos 2πfct−Q(t)sin2πfct
= a(t) cos[2πfct+ φ(t)]

Thus for FM:

a(t) = Ac
φ(t) = 2πkf

∫ t
0
m(α)dα

I(t) = Ac cos 2πkf
∫ t

0
m(α)dα

Q(t) = Ac sin 2πkf
∫ t

0
m(α)dα

5.3 FM with Sinusoidal Message

Now consider a sinusoidal modulating wave defined by

m(t) = Am cos(2πfmt)

We re-derive the equation for the FM wave with the same 3 starting points.

1. The idea of FM is that the instantaneous frequency of the resulting FM wave equals:

fi(t) = fc + kfAm cos(2πfmt)
= fc + ∆f cos(2πfmt)

where ∆f = kfAm.

Thus the message causes the instantaneous frequency to vary above and below the carrier frequency
fc, from fc−∆fto fc+∆f . The quantity ∆f is called the frequency deviation, since the instantaneous
frequency deviates from the carrier by that amount.

1. A general signal:
s(t) = a(t) cos θ(t)
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1. The instantaneous frequency of a signal is:

fi(t) =
1

2π

dθ(t)

dt

Combining these 3 starting points, we can write:

θ(t) = 2πfct+ ∆f
fm

sin(2πfmt)

= 2πfct+ β sin(2πfmt)

Where β =
kfAm
fm

= ∆f
fm

is called the modulation index of the FM wave.

Thus the FM wave itself is given In terms of β by:

s(t) = Ac cos [2πfct+ β sin(2πfmt)]

If β is small we have narrowband FM (NBFM) and if β is large (compared to one radian) we have
wideband FM.

Thus for a sinusoidal modulating wave m(t) = Am cos(2πfmt) the FM wave can be written:

s(t) = I(t) cos 2πfct−Q(t)sin2πfct = a(t) cos[2πfct+ φ(t)]

where:
a(t) = Ac
φ(t) = βsin2πfmt
i(t) = Ac cosβsin2πfmt
q(t) = Ac sinβsin2πfmt

5.3.1 Narrowband FM with Sinusoidal Message

When β is small compared to one radian, i.e.β << 1, the FM wave may be approximated using
cosx ≈ 1, sinx ≈ x for x << 1 to obtain

s(t) ∼ Ac cos(2πfct)− βAc sin(2πfct) sin(2πfmt)

Thus for β << 1
i(t) = Ac
q(t) = βAcsin2πfmt



CHAPTER 5. FREQUENCY MODULATION 109

Narrow-
band Frequency and Phase Modulator

Exercise: find the complex envelope s̃(t) for a NBFM signal. Recall that in general

s̃(t) = a(t)ejφ(t)

s(t) = Re{s̃(t)ej2πfct}
a(t) =

√
i2(t) + q2(t)

φ(t) = arctan q(t)
i(t)

Compare the NBFM waveform equation with the AM equation, note the similarity and differences.

s(t) = Accos2πfct+Acµ cos 2πfmt cos 2πfct

Observe that NBFM signal wave requires essentially the same transmission bandwidth (i.e., 2fm) as
an AM wave.

5.4 Power Spectrum of an FM Signal – Bessel functions

Consider the FM signal with a single tone message m(t) = Am cos(2πfmt) so that

s(t) = Ac cos [2πfct+ β sin(2πfmt)]
= Re{Acej(2πfct+β sin(2πfmt)} = Re{Aceβ sin 2πfmtej2πfct}

In what follows, we will evaluate the FM complex envelope and find that it is given in term of
a special function called a Bessel function. Once we have defined this function, we continue with
finding the FM power spectrum and bandwidth.

The FM complex envelope a(t)ejφ(t) = Ace
jβ sin 2πfmt is periodic with period 1/fm so we can write

the complex envelope as a complex Fourier series with index n

Ace
jβ sin 2πfmt = Ac

∞∑

n=−∞
cne

j2πn fmt

The Fourier coefficients are given by the integral
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cn = fm ∫1/fmt=0 ejβ sin 2πfmte−j2πn fmtdt
∆
= Jn(β)

This integral depends on two parameters n and β, but cannot be evaluated in terms of elementary
functions, so it is given a name Jn(β) called the Bessel function of the first kind and order n.

By a change of variable u = 2πfmt we can write

Jn(β) =
1

2π
∫2πu=0 e

j(β sinu−nu)du

The function Jn(β) , the Bessel function of the first kind of order n, is plotted in the figure below
for values of n from 0 to 4.

Jn(β) looks like a damped cosine wave for n = 0 and damped sine waves for n ≥ 1

The Bessel function has many properties and identities (just like cos and sin)

Jnβ = (−1)nJ−n(β)

∞∑

n=−∞
J2
n (β) = 1

Also, for small values of β, we have:

J0 (β) ∼ 1, J1 (β) ∼ β

2

and:
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Jn (β) ∼ 0, n > 1

Now that we have introduced the Bessel function, we continue to find the FM power spectrum and
bandwidth.

The FM complex envelope can be written

a(t)ejφ(t) = Ace
jβ sin 2πfmt = Ac

∞∑

n=−∞
Jn(β)ej2πn fmt

Thus the FM signal is written

s(t) = Re{a(t)ejφ(t)ej2πfct} = Re{Aceβ sin 2πfmtej2πfct}
= Re{Ac[

∑∞
n=−∞ Jn(β)ej2πn fmt] ej2πfct}

= Ac
∑∞
n=−∞ Jn (β) cos [2π(fc + nfm)t]

The discrete spectrum of the FM wave is obtained as

S(f) =
Ac
2

∞∑

n=−∞
Jn (β) [δ(f − fc − nfm) + δ(f + fc + nfm)]
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As for the case of AM, we may ask why it is that for a sinusoidal message we see discrete sidebands
at fc ± n fm, since the instantaneous frequency given by

fi(t) = fc+ ∆f cos(2πfmt) = fc+βfm cos(2πfmt)can be any continuous value and is not restricted
to a discrete set of values.

If we were to view the frequency domain representation of the FM signal and the observation (time)
interval is far less than the message period 1/fm , the spectrum consists of one impulse or “spike” at
fi(t) that moves around in frequency in a continuous fashion as time progresses. If the observation
interval is greater than 1/fm, then the spectrum is discrete with sidebands spaced at intervals of
fm. The derivation of the FM spectrum above uses the complex Fourier series and thus assumes an
observation interval of one message period.

5.4.1 Observations about FM spectrum

We make the following observations about the FM spectrum as observed over an interval greater
than the message period 1/fm

1. the spectrum includes components at frequencies fc ± n fmthat are integer multiples of the
message frequency above and below the carrier frequency.

2. The number of significant peaks increases as β increases.

3. As β increases, more and more peaks become significant, but some peaks become smaller, all
in accordance with the Bessel function curve.

4. Thus the shape (‘envelope’) of the spectrum depends on β in a complicated way.

5. It is not obvious from the spectrum plot, but for any value of β, and thus for any spectrum
shape, the powers in the all of the peaks added together adds up to 1. This is because the
average power of an FM wave developed across a 1 ohm resistor is given by:

P =
A2
c

2 ·
∑∞
n=−∞ J2

n (β) =
A2
c

2 independent of the values of β, since all the Bessel function power
spikes in the power spectrum add up to 1.

The FM spectrum depends upon the modulation index β as mentioned above ; this means it is a
function of ∆f and fm.

5.4.2 Wideband FM large modulation index

Beta is large (WBFM): β = ∆f
fm

= 10 ; ∆f = 10fm;

fmax = fc + ∆f ; fmin = fc −∆f

Wideband Frequency Modulation: ∆f � fm; β � 1
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5.4.3 Narrowband FM, small modulation index

Beta is small (NBFM); β = ∆f
fm

= 0.1; ∆f = 0.1fm

fi (t) = fc + kfm (t) = fc + ∆fcos(2πfmt)

Narrowband Frequency Modulation: ∆f � fm; β � 1

5.4.4

Effective bandwidth of FM – Carson’s rule

For practical purposes, the bandwidth of the FM wave corresponds to the bandwidth containing
98% of the signal power.
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The effective bandwidth of the FM signal is approximately given by Carson’s formula:

B = 2(1 + β)fm = 2∆f + 2fm = 2(∆f + fm) = 2(kfAm + fm)

Carson’s formula is intuitively reasonable: the bandwidth must be at least twice the frequency
deviation since the instantaneous frequency changes from fc −∆fto fc + ∆f .

The bandwidth must also be twice the modulating frequency.

For a general message m(t) =
∑
iAi(t) cos(2πfit+ψi(t)) containing many cos waves, we can estimate

the FM bandwidth by considering the highest frequency (i.e. the message bandwidth W ) and highest
amplitude A in the message. For this case, we replace fm →W and Am → A and find

B = 2kfA+ 2W = 2(1 +D)W
DW = kfA

Thus the deviation ratioD =
kfA
W has the same role as the modulation index β =

kfAm
fm

in determining
the bandwidth of an FM signal.

5.5 Frequency modulators (transmitters)

A common analog method is so-called indirect FM modulation.

The process starts with a narrowband modulator as shown above, and repeated below, that imple-
ments s(t) ∼ Ac cos(2πfct)− βAc sin(2πfct) sin(2πfmt)

Narrowband angle modulator

The next step is to multiply the signal by itself several times, thus increasing both the carrier
frequency and the modulation index, as shown in the figure and mathematics below
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s(t) = Ac cos(2πfct+ βsin2πfmt)
s2(t) = Ac

2 cos2(2πfct+ βsin2πfmt)
= DC +Ac

2 cos(4πfct+ 2βsin2πfmt)
s4(t) = DC +Ac

4 cos(8πfct+ 4βsin2πfmt)

We observe that both the deviation and modulation index increase when the signal is multiplied
by itself. In practice the multiplication may be many times, as illustrated in the example below.
A downconversion stage may be required if the desired carrier frequency is low and the desired
deviation (β ) is large.

In this figure, the message waveform is integrated and then phase modulated in accordance with the
FM equation

s(t) = Ac cos

[
2πfct+ 2πkf

∫ t

0

m(α)dα

]

A digital method of building an FM transmitter simply implements the FM equation in software.
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5.6 Frequency Demodulation

Frequency demodulation extracts the original message wave from the frequency-modulated wave. We
describe two basic devices, the analog-like frequency discriminator and a digital FM demodulator.

How to extract the message from an FM signal? We consider four intuitive approaches.

5.6.1 Intuition 1: Differentiation

We know that from the idea of FM fi(t) = fc + kfm(t) = fc + 1
2π

dφ(t)
dt so that m(t) = 1

2πkf

dφ(t)
dt

Since s(t) = a(t)cos[2πfct+φ(t)] with a(t) = Ac(constant) we see that if we differentiate s(t)we will

get a term in ds(t)
dt that looks like dφ(t)

dt

A demodulator based on this intuition is in the figure below.

s(t)→ LIMITER → BPF → DIFFERENTIATOR →
ENVELOPE DETECTOR → DC BLOCK→ m(t)

We differentiates(t)as a first step to extract the messagem(t). Assuming Ac is constant we have:

s(t) = Ac cos

[
2πfct+ 2πkf

∫ t

0

m(α)dα

]

ds(t)

dt
= −Ac [2πfc + 2πkfm(t)] sin

[
2πfct+ 2πkf

∫ t

0

m(t)dt

]

This expression is in the form of an AM signal

2πfcAc[1 + kam(t)] cos[2πfct+ φ(t)] = a(t) cos[2πfct+ φ(t)]

with envelope 2πAcfc

[
1 +

kj
fc
m(t)

]
with ka = kf/fcand phase 2πkf

∫ t
0
m(α)dα− π/2

The resulting AM signal can be demodulated by an envelope detector to obtain DC plus the message.
The envelope detector ignores the phase.

Note that if the FM signal has a(t) 6= Acis not constant (e.g. due to channel fading or noise), then
differentiation will not work, since for this case

ds(t)
dt = −a(t) [2πfc + 2πkfm(t)] sin

[
2πfct+ 2πkf

∫ t
0
m(t)dt

]

+da(t)
dt cos

[
2πfct+ 2πkf

∫ t
0
m(α)dα

]

To make a(t) = Acis constant, we can use a limiter (e.g. with back to back diodes) ahead of the
discriminator. The limiter limits (clips) the input signal so that it is of constant amplitude. The
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output of the limiter looks like a square wave with changing frequency, and will contain harmonics
at odd multiples of fc. The limiter must be followed by a bandpass filter at fcto restore the signal

s(t) = Ac cos
[
2πfct+ 2πkf

∫ t
0
m(α)dα

]

A block diagram of this FM demodulator is

s(t)→ LIMITER → BPF → DISCRIMINATOR →
ENVELOPE DETECTOR → DC BLOCK→ m(t)

5.6.2 Intuition 2: Linear Amplitude vs. Frequency Characteristic

We know that from the idea of FM fi(t) = fc + kfm(t). If we have a circuit that has output
amplitude that increases linearly with frequency, then the circuit output amplitude will vary in step
with the message.

One such circuit is the ideal differentiator, with a transfer function given by H(f) = j2π f.

Proof: If s(t)→ S(f) then ds(t)/dt→ j2πfS(f)

The transfer function acts as a frequency to voltage converter, and is illustrated below, centered at
the carrier frequency

The slope is such that the transfer function changes by j2πBT over a bandwidth BT centered at fc

The action of an ideal differentiator (Figure 3(a)) can be approximated by any device whose mag-
nitude transfer function is reasonably linear, within the range of frequencies of interest.

In Figure 3(b) an RL circuit approximation to a differentiator is used followed by an envelope
detector. The RL circuit is a high pass filter.

A bandpass version of this circuit is shown in Figure 3(c). These discriminators are known as
slope detectors. A more linear response can be obtained by taking the difference between two
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bandpass magnitude responses, as is done by the balanced discriminator shown in Figure 3(d).

In all cases (a)-(d), a limiter and bandpass filter is required ahead of the discriminator

Figure 3 FM Detectors

5.6.3 Intuition 3: Zero Crossing Counter

The message information is contained in the time (location) of the zero crossings, and the amplitude
can be ignored, as shown in the figure below.
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5.6.4 Intuition 4: Phase Locked Loop

Figure 4 Phase-Locked Loop

This circuit uses ideas from the Costas loop receiver used for DSB. The circuit comprises a phase
comparator (multiplier), low pass (loop) filter and voltage controlled oscillator (equivalent to an FM
modulator).

With signal input s(t) = cos[2πfct+ θi(t)]and FM modulator (VCO) output sin[2πfct+ θf (t)], the
phase comparator (multiplier) output signal e(t) = kc [θi(t)− θf (t)] plus double frequency terms.
With high gain in the loop filter, e(t) ≈ 0and the VCO output frequency is the same as the input sig-
nal frequency. Thus the VCO input must be the same as the message. The loop filter output voltage
is proportional to the instantaneous frequency of the input, and FM demodulation is achieved.
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5.7 Digital FM Demodulator

A digital FM demodulator starts with the I and Q outputs of a general IQ receiver. Recall for an
FM signal:

s(t) = Ac cos

[
2πfct+ 2πkf

∫ t

0

m(α)dα

]

I(t) = Ac cos 2πkf
∫ t

0
m(α)dα

Q(t) = Ac sin 2πkf
∫ t

0
m(α)dα

To extract m(t)from I(t), Q(t) we show two methods that can be implemented in software.

5.7.1 I(t), Q(t) as Real Signals

Formula: m(t) = d
dtarctan{

Q(t)
I(t) }

Block diagram: I(t), Q(t)→ DIV IDE → ARCTAN → d/dt→ m(t)

Proof:
d
dt arctan{Q(t)

I(t) } = d
dt arctan

Ac sin 2πkf
∫ t
0
m(α)dα

Ac cos 2πkf
∫ t
0
m(α)dα

= d
dt arctan{tan 2πkf

∫ t
0
m(α)dα} =

= d
dt2πkf

∫ t
0
m(α)dα = 2πkfm(t)

This method is not good in practice because when I(t) is small, the division by a small number will
cause numerical problems.

5.7.2 I(t) + jQ(t) as a Complex Signal

s(t) = Re{a(t)ejφ(t)ej2πfct} = Re{[I(t) + jQ(t)]ej2πfct} = Re{s̃(t)ej2πfct}
Formula:

m(t) = arg[s̃(t− 1)s̃ ∗ (t)]

Where:
(t− 1)→ z−1

represents one sample delay

Block diagram:
s̃(t)→ s̃(t− 1), s̃∗(t)→MULTIPLY → ARG
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Proof:
arg[s̃(t− 1)s̃ ∗ (t)] = arg[a(t− 1)ejφ(t−1)a(t)e−jφ(t)]

= φ(t− 1)− φ(t) ≈ dφ
dt = 2πkfm(t)

This method of FM demodulation is commonly used in software defined radios.

Alternate Formula:
m(t) = arg[s̃(t)s̃ ∗ (t− 1)]

Proof:
arg[s̃(t)s̃ ∗ (t− 1)] = arg[a(t)ejφ(t)a(t− 1)e−jφ(t−1)]

= φ(t)− φ(t− 1) ≈ dφ
dt = 2πkfm(t)

5.7.3 Demodulator with frequency offset

In the event of a frequency offset, the complex baseband signal will include a rotating exponential
representing the frequency offset

s̃(t) = a(t)ejφ(t)ej(2πfbt+ψ)

In this case,

arg[s̃(t)s̃ ∗ (t− 1)] = arg[a(t)ejφ(t)ej(2πfbt+ψ)a(t− 1)e−jφ(t−1)e−j(2πfb(t−1)+ψ)]

= φ(t)− φ(t− 1) + 2πfbt− 2πfb(t− 1) ≈ dφ
dt − 2πfb = 2π(kfm(t)− fb)

Thus the frequency offset results in a DC offset added to (or subtracted from) the message. If the
frequency offset is large, then the DC offset may be larger than the peak value of the message.
Since the message is represented digitally, the DC offset may approach or exceed the maximum (or
minimum) value that can be represented in which case the message may be clipped.

5.8 Pre-emphasis and de-emphasis in FM

5.8.1 Pre- and de-emphasis circuits

All versions of the FM demodulator are essentially a differentiator or high pass filter whose output
will increase linearly with the input frequency. Thus for a message consisting of two cos waves at
f1 and f2 > f1 of equal amplitude, then at the FM demodulator output, the wave at f2 will have a
larger amplitude than the wave at f1.
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For f2 = 2*f1, the amplitude of f2 will be twice the amplitude at f1, and the power will be 4 times
higher (6 dB). The noise (with components at all frequencies) will also have a high pass characteristic
with larger amplitude at higher frequencies.

To compensate for this effect, the transmitted message signal is filtered with a so-called pre-emphasis
filter to also increase the amplitude of the message at high frequencies. Thus both the message signal
and the noise will have increasing amplitude at higher frequencies. The pre-emphasis filter is a single
pole filter with 6 dB per octave (or 20 dB per decade) slope.

The FM receiver contains a de-emphasis filter to decrease the amplitude at high frequencies so that
the message is reconstructed correctly. For a message with cos waves at f1 and f2 > f1 of equal
amplitude, then at the FM demodulator output after the de-emphasis filter, the wave at f2 will have
the same amplitude as the wave at f1.
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The de-emphasis filter can be implemented with an analog RC circuit as shown in the figure.

For Broadcast FM in North America, the RC time constant is set to 75 usec, corresponding to a
cutoff frequency of 1

2πRC = 1
2π75·10−6| = 2122 Hz.

The impulse response of the RC circuit is h(t) = e−t/RC so that the signal decays to 1/e = 36.8 %
of its initial value in time t = RC

5.8.2 De-emphasis with digital filter

This filter can be implemented digitally with a single pole IIR filter with difference equation

y[n]− (1− α)y[n− 1] = αx[n] or
yn = (1− α)yn−1 + αxn

with transfer function derived as follows:

Y (z)− z−1(1− α)Y (z) = αX(z)
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H(z) =
Y (z)

X(z)
=

α

1− (1− α)z−1
=

αz

z − (1− α)

This filter has a single pole at 1− α and a single zero at 0.

The impulse response may be found by inverse z-transform or iteration to find

h[n] = α(1− α)nu[n]

This filter is implemented in GNURadio GRC as a single pole IIR filter block with parameter α, see

http://gnuradio.org/doc/sphinx-3.7.0/filter/filter blk.html#gnuradio.filter.single pole iir filter cc

The Matlab representation is y = filter(b, a, x) for a general filter, where we define the vectors
a = [1 a1 a2], b = [1 b1 b2], see www.mathworks.com/help/matlab/ref/filter.html

for the filter with difference equation

y[n] + a1y[n− 1] + a2y[n− 2] = b0x[n] + b1x[n− 1] + b2x[n− 2]

and transfer function

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

For the filter considered here y[n]− (1− α)y[n− 1] = αx[n]

Thus a = [a1 a2] = [1 − (1− α)] and b = [b0] = [α].

The filter characteristics (including frequency response, phase response, phase delay, group de-
lay, pole-zero plot, impulse response) can be viewed using the Matlab command fvtool(b,a), see
www.mathworks.com/help/signal/ref/fvtool.html

For example, if α = 0.1 then set the values in fvtool to be b = 0.1 and a = [1 − 0.9]

The impulse response of the digital filter is h[n] = α(1 − α)nu[n] and thus is an exponential decay
similar to that of the analog RC filter.

The signal decays to 1/e = 36.8 % of its initial value in d samples such that

h[n = d]

h[n = 0]
=
hd
h0

=
α(1− α)d

α
= (1− α)d = e−1 or 1− α = e−1/d

Given the sampling rate of the filter fs and the desired time constant t = RC we set the number
of samples dneeded for the filter output to decay to 1/e = 36.8% of its initial value during the time
from t = 0to t = RC to be d/fs = RC or d = RCfs
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For example, if we assume a sampling rate of 250 KHz and time constant of 75 usec, we set d =
RCfs = 75 · 10−6 · 0.25 · 106 = 19samples.

The value of α is found via 1− α = e−1/d. In this example 1− α = e−1/19 = 0.9487

An expression for the frequency response is obtained by choosing z = ej2πf/fs around the unit circle
in the z -plane, so that

H(f) = H(z)|z=ej2πf/fs =
α

1− (1− α)z−1
|z=ej2πf/fs =

α

1− (1− α)e−j2πf/fs
=

1

α−1 − (α−1 − 1)e−j2πf/fs
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The gain at f = 0 or z = 1 is H(z = 1) = α
1−(1−α) = α

α = 1

The gain at f = fs/2 or z = ejπ = −1 is H(z = −1) = α
1+(1−α) = α

2+α = 1
1+2/α

The gain is reduced by 3dB at a cutoff frequency fC such that

1/d = 2πfC/fs or (1− α) = e−1/d = e−2πfC/fs .

The gain at fC such that (1−α) = e−2πfC/fs isH(f = fC) = α
1−(1−α)e−j2πf/fs

= 1−e−2πfC/fs

1−e−2πfC/fse−j2πfC/fs

Here fC/fs is normalized to the sampling rate so that 0 ≤ fC/fs ≤ 0.5

Recall for the analog filter the cutoff frequency 1
2πRC = 1

2π75·10−6| = 2122Hz.

We want the gain for the digital filter at 2122 Hz to be 3 dB down.

In this case, assuming a sampling rate of 250 KHz, the normalized frequency is fC
fs

= 2122
250000 = 0.00848

Substituting these values into the 3dB cutoff frequency result (1− α) = e−2πfC/fswe find

e−2πfC/fs = e−0.00848 = 0.9481 = (1−α) consistent with the value of α found via 1−α = e−1/dabove,
and also consistent with the frequency (magnitude) response plot.
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Thus a digital de-emphasis filter with time constant 75 usec, cutoff frequency 2122 Hz and sampling
rate fs = 250000 Hz may be built using a single pole IIR filter with parameter α = 1−0.948 = 0.052

5.9 Frequency and Phase Modulation review

Frequency and phase modulation (FM and PM) are two modulation types that encode information
within a carrier wave just as in amplitude modulation but instead, the message is represented by
varying frequency as opposed to varying amplitude. We start once again with the general signal
s (t) formed by multiplying the amplitude function a (t) by a carrier wave c(t) = cos[2πfct+ ψ (t)].

s (t) = a (t) cos[2πfct+ ψ (t)]

Recall that ψ (t) = 2π∆ft + ϕ(t). Where ϕ(t) represents phase shift but in contrast to AM, it is
a function of time. Additionally we begin by neglecting any frequency error ∆f leaving us with
ψ(t) = ϕ(t) and therefore s (t) = a (t) cos[2πfct+ ϕ (t)]. We let theta represent the argument of the
carrier:

θ (t) =2πfct+ φ (t)

s (t) = a (t) cosθ(t)

In PM, we use phase shift term, ϕ(t) to encode our message within the frequency of the modulated
wave and leave our amplitude function constant.

φ(t) = kpm (t)
a (t) = Ac

Thus phase modulation involves a modulated wave of form s (t) = Accos [2πfct+ kpm (t)] . An
important parameter to which we will refer for both FM and PM, is the signal’s instantaneous
frequency. This function is denoted as the derivative of the argument:

fi (t) =
1

2π

d

dt
θ(t)

PM: fi (t) = 1
2π

d
dtθ (t) = 1

2π
d
dt [2πfct− kpm (t)] = fc + 1

2πkp
d
dtm (t)

A question that may strike at this point is, “How would we then represent frequency modulation?”

We simply choose ϕ (t) so that fi (t) = m(t). This means that since s (t) = Accos[2πfct+ ϕ(t)], we

let ϕ (t) = 2π
∫ t
−oo kfm (α) dα. This produces the following transmitted signal with its particular

intermediate frequency:

FM: s (t) = Accos[2πfct+ 2πkf
∫ t
−oom (α) dα]

fi (t) =
1

2π

d

dt
θ (t) =fc + kfm (t)

Recall that for AM the function representing the modulated wave’s amplitude at any given time is
a (t) = Ac [1 + kam (t)] = Ac +Ac [kam (t)]. Analogously for FM fi (t) = fc + kfm(t).
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Now that we have the correct form, we can write a complete expression for the FM signal.

θ (t) = 2π

∫ t

−−oo
fi (α) dα

θ (t) = 2π

∫ t

−oo
[f c+kfm (α)]dα

θ (t) = 2πfct+ 2π

∫ t

−oo
kfm (α) dα

s (t) = a (t) cos [2πfct+ ϕ (t)] ; where a (t) = Ac constant

So we have ϕ (t) = 2π
∫ t
−oo kfm (α) dα

We will assume that the message m (t) = Amcos(2πfmt) meaning that the instantaneous frequency
becomes fi (t) = fc + kfAmcos(2πfmt). Therefore...

ϕ (t) = 2π

∫ t

−oo
kfAmcos(2πfmα)dα

ϕ (t) = 2πkfAm
sin (2πfmα)

2πfm
| t−oo

ϕ (t) =
kfAm
fm

sin(2πfmt)

A real message is formed by a succession of frequencies representing information. The frequency
deviation from fc is denoted by ∆f. This value represents how far on the spectrum the instantaneous
frequency is away from the carrier frequency and is equal to kfAm.

ϕ (t) = ∆f
fm

sin(2πfmt); β = ∆f
fm

is called the modulation index

s (t) = Accos[2πfct+ βsin2πfmt]

When the modulation index is large compared to one radian, we call the modulation type wideband
FM (WBFM). When it is small it is referred to as narrowband FM (NBFM).

Recall that µ, the modulation index for AM, specifies the difference between the maximum and
minimum amplitude of the modulated wave just as β specifies the maximum frequency deviation in
FM.

AM: s (t) = [Ac +Acµcos2πfmt]cos2πf ct ; µ = Amka

s(t)= Accos (2πfct) +
Acµ

2
cos [2π (fc + fm) t] +

Acµ

2
cos[2π (fc − fm) t]

To get the amplitude spectrum S(f), we need to take the fourier transform of the signal. If the
signal s (t) is periodic, we cvan write its Fourier series but we need fc

fm
to be an integer.

s (t) =

+∞∑

−∞
Jn (β)cos2π(fc + nfm)t

The discrete spectrum is, S (f) = Ac
2

∑+∞
−∞ Jn (β) [δ (f − fc − nfm) + δ (f + fc + nfm)]
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Note this sprectrum’s symmetry as the Bessel Function, Jn (β) = (−1)
n
J−n (β). Also note that

the sidebands that are spaced at nfm, n = ±(1, 2, 3, . . . ). The values of the Bessel Function are
decreasing in magnitude such that

∑
J2
n (β) = 1.

The Bessel function Jn depends upon n and β like a damped sine wave. Using the signal’s Beta
value, and the integer n, we can find the value of Jn (β).

Once again we draw comparisons to the form of an AM wave. When presented in a similar fashion,
it is plain to see that both modulation types are analogues of each other:

AM: a (t) = Ac +Acµcos (2πfmt)

s(t) = Ac

1∑

n=−1

kn(µ)cos[2π (fc + nfm) t];µ = Amka

k0 = 1, k±1 =
µ

2
; for n 6= 0, ±1 , kn = 0

FM: fi (t) = fc + ∆fcos2πfmt

s (t) = Ac
∑

Jn(β)cos[2π (fc + µfm) t];β =
∆f

fm

5.9.1 Redundancy

Thus far we have discussed in detail, single sideband (suppressed carrier), double sideband (sup-
pressed carrier), standard AM, and FM. The first of these has no redundancy as only one sideband
exists holding the message information (this lack of redundancy occurs at the expense of ease of
demodulation). DSB-SC includes two copies of the message, allowing the carrier to be located with
an IQ receiver; AM signals are not extremely power efficient but they can be received with a simple
analog envelope detector; FM waves have may sidebands and hence are highly redundant. One
should not look on redundancy in the FM wave as wasteful however. It means that the FM wave
can be received even with interference. In FM, one can properly demodulate a signal provided its
signal to noise ratio (S/N) is above the “capture threshold”, meaning that inherent noise is not
above a level that renders the information indiscernible.
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The FM spectrum depends upon the modulation index β; this means it is a function of ∆fand fm.

Consider these examples:

1. Beta is large (WBFM): β = ∆f
fm

= 10 ; ∆f = 10fm;

fmax = fc + ∆f ; fmin = fc −∆f

Wideband Frequency Modulation: ∆f � fm; β � 1
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1. Beta is small (NBFM); β = ∆f
fm

= 0.1; ∆f = 0.1fm

fi (t) = fc + kfm (t) = fc + ∆fcos(2πfmt)

Narrowband Frequency Modulation: ∆f � fm; β � 1

If we were to view the frequency domain representation of the FM signal and the observation (time)
interval is far less than the message period Tm = 1

fm
, the spectrum consists of one impulse or “spike”

at fi(t). If the observation interval is much greater than 1
fm

, then the spectrum is discrete with
sidebands spaced at intervals of fm.

A useful and highly practical exercise is to simplify the FM signal expression, s(t) for narrowband
FM (when β � 1) and interpret what it means:

In general, s (t) = Accos[2πfct+ βsin(2πfmt)]

Now we apply the trigonometric identity cos (α+ β) = 1
2 [cos (α) cos (β) − sin (α) sin(β) ]

So we get, s(t) = Ac
2 [cos (2πfct) cos[βsin(2πfmt)]− sin (2πfct) sin[βsin(2πfmt)]

Now use narrowband approximation, β � 1 and recall that for small x, sinx ≈ x, cosx ≈ 1

Thus: s (t) = Accos (2πfct) (1)−Acsin (2πfct) [βsin (2πfmt) ]

So for NBFM: s (t) = Accos (2πfct) −Acsin (2πfct) [βsin (2πfmt) ]

Recall the general modulated signal of any type must be of the form:

s (t) = vi(t)cos(2πfct) + vq(t)sin(2πfct) or s (t) = x(t)cos(2πfct) + y(t)sin(2πfct)

As is apparent from the above NBFM approximation, x (t) = Ac and y (t) = Acβsin(2πfmt). In

general for frequency modulation, x (t) = cos (βsin [2πfmt] ) = cos(2πkf
∫ t

0
m(α)dα) and y (t) =

sin (βsin [2πfmt] ) = sin(2πkf
∫ t

0
m(α)dα) .

We may seem to be constantly bringing up similarities to AM, but due to NBFM comprising two
sidebands and a carrier (as displayed below) we can think of this wave as being an AM/FM hybrid
of sorts.



CHAPTER 5. FREQUENCY MODULATION 132

Given the identity, sin (α) sin (β) = 1
2cos (α− β) − 1

2 cos(α+ β)

We have...

FM: s (t) = Accos (2πfct) − Ac
2 βcos[2π(f c − fm)t] + Ac

2 βcos[2π(f c + fm)t]

AM: s (t) = Accos (2πfct) + Ac
2 µcos[2π(f c + fm)t] + Ac

2 µcos[2π(f c + fm)t]

General IQ Transmitter

5.9.2 NBFM Transmission

We now seek a method to build an FM transmitter for general, single-tone message m(t), using
analog components. We need a way to control instantaneous frequency. We may use an RLC circuit
for which the resonant frequency is the following:

fi (t) =
1

2π
√
LC (t)

;for β � 1;β =
∆f

fc
=
kfAm
fm

; kf � 1

s (t) = Accos(2πf c t)−Acsin (2πfct) ( 2πkf

∫ t

0

m(α)dα)

So with a voltage regulated capacitor or varactor (of capacitance C (t)) we can control the capacitance
and thus the instantaneous frequency output of the transmitter’s local oscillator.

However, the maximum variation in capacitance achievable with a varactor is not large enough to
successfully produce a wideband signal (WBFM requires great frequency deviation). This approach
will work well for narrowband frequency modulation but not beyond that.
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5.9.3 WBFM Transmission

An analog transmitter for WBFM uses the voltage controlled capacitor in a slightly more complicated
manner in which an intermediate frequency is defined as the resonant frequency of the RLC circuit.
fIF = 1

2π
√
LC

The instantaneous frequency is fi (t)= fIF + ∆fcos(2πfmt)

In an effort to produce a wideband signal, we may take a NBFM signal and run it through a frequency
multiplier which serves to duplicate sidebands and effectively increase redundancy. The parameters
fc, ∆f, kf , fm become nf c, n∆f, nkf , fm where n serves to indicate the location of each set of
sidebands on the spectrum.

If we consider our carrier to be at fc = nfIF in which case, our frequency deviation becomes n∆f
and our instantaneous frequency would

nf IF + n∆fcos(2πfmt)

The first term in the above represents the carrier frequency and the second shows a wide deviation
in frequency for large n.
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5.9.4 Approximate Bandwidth of FM signal

To acquire the approximate bandwidth W (or B) we may use “Carson’s Rule” which states that

W = 2(∆f + fm) = 2fm

(
1 + ∆f

fm

)
= 2fm(1 + β) where β is the modulation index (bandwidth

expansion factor). For NBFM, W ∼= 2fm.

AM and FM Spectra:

AM: s (t) = Ac
∑1
n=−1 kn(µ)cos[2π(fc + nfm)t]

FM: s (t) = Ac
∑oo
n=−oo Jn(β)cos[2π(fc + nfm)t]

NBFM: s (t) = Ac
∑1
n=−1 Jn(β)cos[2π(fc + nfm)t]

Observe that for AM, the summation includes the carrier and two sidebands (-1, 0, 1) as does NBFM
(analogous to AM), while WBFM includes all sidebands summed over infinity (though low power
make higher order terms negligible).

Stereo FM

We have two messages, m1 (t) and m2(t) each representing left and right parts of the audio signal
mL (t) and mR(t). We have some choices for how we will modulate the FM wave. We can combine
amplitude and frequency modulation:

1. s (t) = a (t) cos[2πf c t+ ϕ (t)]; m1 (t) = a(t); m2 (t) = ϕ(t)

This is not typically a good idea for FM since we are storing information in a(t) and many FM
receiver designs ignore amplitude variations as often a hard limiter is applied to unify the incoming
signal’s amplitude. A second possibility is to store m1 (t) on the upper sideband m2 (t) on lower
sideband using Hilbert Transforms of each to ensure that they each only occupy a single sideband:

We have managed to run into the same problem of storing information within the amplitude here
once again. We now try the idea of sum and difference frequencies:

1. mm (t) = mL (t) +mR (t); a mono signal

ms (t) = mL (t)−mR (t) ; a difference signal

Therefore we have a new form of message storing all pertinent information for stereo audio. In this
method, we will modulate solely the frequency:

m (t) = mL (t) +mR (t) + cos (2πfsct) + [mL (t)−mR (t)]cos(4πfsct)

m (t) = mm (t) + [ms(t)] cos(4πfsct) + cos(2πfsct); fsc is the sub-carrier.

s (t) = Accos[2πf c t+ 2πkf

∫ t

0

m(α)dα ]
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Stereo FM Transmitter

5.9.5 FM Demodulation:

Let us begin to understand the principles of FM reception with an intuitive approach to the ex-
traction of the argument, θ(t). Recall that the message is stored in this angle as demonstrated
below.

s (t) = Accosθ(t)

s (t) = Accos[2πf c t+ 2πkf

∫ t

0

m(α)dα ]

Taking the derivative will yield the following form which is reminiscent of our AM modulated wave.
A simple envelope detector or the IQ receiver may be used to acquire the envelope [a(t)] when a
transmission has this form s (t) = a(t)cos [θ(t)] .

d

dt
s (t) = Acsin [θ (t)]

dθ

dt
= −Acsin [θ (t)] [2πf c + 2πkfm(t)]

dθ (t)

dt
= 2πf c[1 +

kf
fc
m(t)]
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d

dt
s (t) = −A

c
sin [θ (t)] 2πf c[1 +

kf
fc
m(t)]

a (t) = −Ac2πf c[1 +
kf
fc
m(t)]

This is the amplitude function or envelope and our signal has the form s (t) = a(t)sin [θ (t)] . Upon
extracting this, we may remove the DC component and scale appropriately to get m(t).

Unenlightened Approach to FM Demodulation

Practical experimentation has will expose a problem with this approach. As an FM wave’s amplitude
tends to vary with frequency, the envelope detector will also detect these variations. The message
received will not be the one sent.

One way which the amplitude of an FM wave is forced constant is the use of a. This device “clips” any
sinusoid whose amplitude is greater than a specified magnitude. The result is a uniform amplitude for
all frequencies throughout a signal. A hard-limiter creates unwanted “out of band” distortion terms
but these can be filtered out. Clipping a signal will introduce many harmonic frequencies (which
are mathematically necessary to form the near-square appearance of a clipped waveform) but the
zero crossings (time axis intercepts) will remain unchanged; clipping is the loss of amplitude, not
frequency information which is okay considering we have stored no info within amplitude variations.

s(t) Processed Though a Hard Limiter

We seek now, a more effective approach to this demodulation technique after limiting has taken
place. The steps involved in successful FM demodulation of and FM wave are as follows.

1. Limiter- As previously discussed, the amplitude changes of the FM wave are suppressed and
the wave is clipped.

1. Filter- We apply a filter (BPF) to the signal to remove the many additional harmonics that
have been introduced through the limiting process. With this we have removed any present
amplitude alterations which posed a problem in the demodulation technique discussed above.

1. Differentiator- The derivative of the signal must be taken. Recall that a differentiator has
frequency response H (f) = j2πf .



CHAPTER 5. FREQUENCY MODULATION 137

Recall the form of the frequency response of a bandpass filter. We may make the BPF wider or
narrower with a certain centre frequency by altering the circuit which represents it. If we place two
BPFs with opposing polarities, each centred at offset frequencies, we get a linear portion with a
constant slope. We may vary the parameters of each BPF and their respective centre frequencies in
order to acquire our ideal constant slope of H (f) = j2πf . When the bandpass filter is applied to

the FM signal, the output is the differentiated FM wave: d
dts (t) = −A

c
sin [θ (t)] 2πf c[1 +

kf
fc
m(t)].

With the effect of the limiter being zero amplitude deviation prior to differentiation, we now can
extract an envelope (instantaneous frequency) using an envelope detector.

In practice the instantaneous frequency can be found using an IQ detector. We still first apply a
limiter and a bandpass filter then we run the signal through the general IQ configuration:

s (t) = Accos

[
2πfct + 2πkf

∫ t

0

m (α) dα

]

s (t) = a(t)cos [2πfct + ϕ(t)]

s (t) = a(t)cos [θ(t)]

a (t) = Ac

From this, we acquire the following terms: x (t) = a(t)cos [ϕ(t)] and y(t) = a(t)sin [ϕ(t)] . We
divide these [keeping in mind that sin(a)/cos(a) = tan (a)] and we are left with tan [ϕ(t)] . Taking
the inverse tangent of this expression yields ϕ(t), which is proportional to the integral of the message.
Using a differentiator (software version or the analog filter method outlined above) and finally scaling
and DC-shifting as necessary we produce our message.

ϕ (t) = 2πkf

∫ t

0

m (α) dα

d

dt
ϕ (t) = 2πkfm (t)

fi (t) =
1

2π
dθ/dt = fc +

1

2π
dϕ/dt = fc + kfm(t)

There are many ways to demodulate an FM wave. It is noteworthy to point out that if one is im-
plementing a software method, simply analyzing the zero crossings will produce the instantaneous
frequency for an interval, regardless of amplitude. This method works especially well if frequency
shift keying is used (FSK) in which a set number of frequencies (two for binary, sixteen for hexadec-
imal, etc) are used to transmit a message. One can write a program to find the carrier frequency
and determine when each of these frequencies are active and thus what information is encoded.
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FM Receiver With Explicit “Map”



Chapter 6

Baseband data transmission

6.1 Digital messages

m(t)is a digital message 11100101 as shown in the figure below.

Figure 1 Digital Message

In Figure 1, p(t)is chosen to be a so-called square pulse, where we can write p(t) = 1 for 0 < t <
T and 0 otherwise . We send one such pulse for each data bit, a positive pulsep(t) for logic 1 and
a negative pulse for logic 0. In the figure, the message is shown in the interval 0 < t < 8Tand the
data bits are 11100101.

For the period 0 < t < T , m(t) = A0p(t) = +1and the data is logic 1. For the next period
T < t < 2T , m(t) = A1p(t − T ) = +1, and the data is logic 1. In the example figure above, the
message is shown in the interval 0 < t < 8Tand the information bits are 11100101

We can write m(t) = A0p(t) + A1p(t − T ) + A2p(t − 2T ) + ... =
∑
k Akp(t − kT )where the real

constants Ak = ±1 depending on whether a logic 1 or a logic 0 was sent.

In the figure above, A0 = +1, A1 = +1, A2 = +1, A3 = −1, A4 = −1, A5 = +1, A6 = −1, A7 = +1

139
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The constants may also be chosen to be Ak = ±1,±3 . In this 4 level system, each pulse represents
one of 4 combinations of 2 bits: 00, 01, 11, 10.

6.2 Data source

The data source produces the data symbols Ak = ±1 that may be stored in memory or generated on
the fly. For testing purposes, it is convenient to have a random data source, with an equal number
of logic 1s and logic 0s, or an equal number of positive and negative pulses. This can be achieved
with a so-called linear feedback shift register.

Two examples are shown in the figure below.

At each time step (symbol time) T , the input on the left is determined by the XOR gate output and
all the bits slide along one step and the output is the bit on the right. If the feedback shift register
is of length M and the feedback taps (XOR gates) are selected correctly, the output sequence will
have length 2M − 1 before it repeats.

6.3 Differential encoding and decodng

6.3.1 Avoiding polarity inversion

A data receiver may easily invert the polarity of the received sequence. This can happen for example
if the data is represented by phase shifts as will be shown in section 7 on phase shift keying. It is
easy to detect changes in phase but much more difficult if not impossible to detect absolute phase.

To avoid this problem, the data sequence is differentially encoded. Data are represented in terms
of the changes between successive signal elements (bits) rather than the signal elements (bits) them-
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selves.

The polarity of the differentially encoded signal can be unintentionally inverted by the receiver. This
inversion will not have any effect on the decoded signal waveform, as shown in the example below.
The encoder output starts with a 1, but this is arbitrary, it could also be a 0. The received sequence
can be inverted or not inverted. The decoder output is the same in both cases.

6.3.2 Differential encoding

The arrows show how the differential encoding works. At the beginning, we have 1+1=0, then
0+0=0, then 0+1=1, etc.

The arrows also show how the differential decoding works. For the received sequence, we have
1+0=1, then 0+0=0, then 0+1=1, etc. For the inverted sequence, 0+1=0, 1+1=0, 1+0=1, etc. In
both cases, a change in the received sequence results in the decoder outputting a “1” bit, and no
change results in a “0” bit.

Exercise: repeat the figure above, but with the first bit in the differential encoder set to 0 instead
of 1.
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In some cases, the decoder output is polarity reversed by convention, so that a change in the received
sequence is decoded as a “0” bit and no change as a “1” bit.

In software simulation, there is no chance that a bit sequence will be reversed. So when creating a
simulation model of a Differentially Encoded sequence, we can ignore this baseband coding.

In the differential encoder, input data bits are modulo 2 SUM with the previous output bits. Modulo
2 SUM is same as EX-OR. The differential encoder equation is

en = dn ⊕ en−1

6.3.3 Differential decoding

In the differential decoder, the current input and a delayed version of the same is fed to the
module 2 sum. This produces the output bits. The differential decoder equation is

d’n = e’n ⊕ e’n−1
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6.4 Data transmission system with pulse shaping

A data transmission system that sends bits from one place to another contains transmitter with
pulse shaping as shown above followed by a receiver with receive filter and a decision device. The
receive filter is ideally matched to the transmit pulse shape filter, but may be a simple low pass
filter.

The received message waveform after filtering by both the transmitter pulse shaping filter and the
receiver low pass or matched filter is a sequence of delayed pulses m(t) =

∑
k Akp(t−kT ). In general

the waveform m(t) will have a peak amplitude that varies depending on the data sequence Ak

The decision device carries out two tasks:

1. (a) i. A. samples this waveform m(t)at the time t = kT + of maximum amplitude for each
symbol, where the value of depends on the pulse shape, and

B. decides what is the value of the symbol (1 or -1 for a binary two level system, or
±1,±3 for a 4 level system).

Pulse shaping can be done in multiple ways. Here we consider three methods:

1. (a) i. A. Generate square pulses and filter with low pass filter.
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B. Generate impulses and filter with time domain FIR pulse-shaping filter.

C. Generate impulses and filter with frequency domain FIR pulse-shaping filter.

D. Generate impulses and filter with Gaussian pulse-shaping filter (t and f domain)

In the following sections, we describe how to

- represent data as square pulses in a sampled system

- filter the square pulses in time domain

- represent data sequence with impulses instead of square pulses

- filter impulses with time domain RC filter

- filter impulses with raised cosine filter shape in frequency domain

- filter impulses with root raised cosine filter in frequency domain

6.4.1 Representing data as square pulses in a sampled system

For a sampling frequency fs and symbol time T , there are fsT samples per symbol. Each square
pulse contains fsT samples of identical value.

The data symbols Ak = ±1are represented by one sample per symbol and come from the data
source at a rate 1/T symbols per second. To generate the square pulse, each sample of data must
be repeated fsT times, so that the square pulse is represented by fsT samples running at sampling
frequency fs to make up a symbol that takes time T to transmit. We also refer to the symbol time
as the symbol length. A sequence of such symbols will look like the waveform m(t) shown in the
figure below with fsT samples per symbol.

6.4.2 Pulse shaping to eliminate the sharp edges of a square pulse

The square pulse can be low pass filtered with a cutoff frequency of 1/(2T ) since this is the highest
frequency in the data stream for an alternating data sequence 101010. . . Ak = 1, k odd, Ak =
−1, k even. Ideally the low pass filter has an impulse response such that with a square pulse input
starting att = 0and ending at t = T , the output is approximately a raised cosine pulse in the time
domain, starting at t = 0 and ending at t = 2T as shown in the figure below.
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We write the RC2 raised cosine pulsep2(t) = [1 − cos(πt/T )]/2 so that p2(t) = 0 for t{0, 2T} and
p2(t) = 1 for t = T (since cosπ = −1 ).

When a data sequence is sent with these pulses, the waveform has rounded edges with minimal
overshoot as shown in the figure on the right.

Raised cosine from t = 0to t = 2T

Mathematically we can write that the sequence m(t) = A0p(t) + A1p(t − T ) + A2p(t − 2T ) + ... =∑
k Akp(t− kT ) using square pulses p(t) = 1 for 0 < t < T and 0 otherwise

is low pass filtered by an analog Bessel filter with impulse responseh(t) to yield another sequence of
pulses

m(t) = A0(t) +A1p2(t− T ) +A2p2(t− 2T ) + ... =
∑

k

Akp2(t− kT )

where p2(t) = p(t)⊗ h(t) has an approximately raised cosine shape from t = 0to t = 2T .

In other words, the response of h(t) to a single square pulse p(t) = 1 from t ≤ 0 ≤ 1 will be the
raised cosine pulse from t = 0 to t = 2T

For an alternating sequenceAk = 1, k odd, Ak = −1, k even, m(t) = cosπt/T = cos 2πfmt where fm =
1/2T (exercise)

The step response (integral of the impulse response) of the Bessel filter h(t)approximates half of the
raised cosine shape, as shown in the figures below, starting at p2(t = 0) = 0 to p2(t = T ) = 1.
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A family of Bessel step responses is shown below, depending on the number of poles.

The frequency response of this filter is shown below



CHAPTER 6. BASEBAND DATA TRANSMISSION 147

Pulse shaping of a square pulse using a low pass filter is shown in the GRC flowgraph below. The
sampling rate is set to fs= 100K.
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The linear feedback shift register (GLFSR) data source generates one sample for each data symbol
Ak = ±1 at a rate 1/T symbols per second. The Repeat block interpolates to make fsT=100 samples
for each data symbol, so that each square pulse contains 100 samples of identical value. The symbol
rate is thus

1

T
=

1000 symbols

sec
=

100K samples
sec

100 samples
symbol

=
fs
fsT

The low pass filter cutoff frequency is set to 1000 Hz and approximates the Bessel filter.
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6.4.3 Representing data sequence with Impulses instead of square pulses

The data sequence can be represented by the sequence of impulsesmδ(t) = A0δ(t) + A1δ(t − T ) +
A2δ(t− 2T ) + ... =

∑
k Akδ(t− kT ).

This sequence of impulsesmδ(t)as shown above is a waveform with only one sample per symbol, so
that we can write mδ,k = mδ(t = kT )and the sampling rate is 1/T

For transmission, this waveform is convolved with a pulse shaping filter with impulse response
p(t)and frequency response P (f) where the convolution operates at a sample ratefs . To represent
this sequence of impulses mδ,k = mδ(t = kT ) as a waveform sampled at fs , the impulses must be
filtered by an interpolating FIR filter that yields one sample Ak = ±1 followed by fsT − 1samples
set to zero, so that the fsT samples per symbol have only one non-zero value. This interpolating
FIR filter will have only one non-zero tap and fsT − 1 zero taps.

This waveform mδ(t)sampled atfs is then in turn convolved with an (regular, non-interpolating)
FIR filter (operating at fs) with impulse response p(t) The output of this FIR filter yields the
message waveform m(t) The filter coefficients of the FIR filter will be the pulse shape p(t)sampled
at fs p(t)can be a square pulsep(t) = 1 for 0 < t < T and 0 otherwise and thus will have fsT taps.
However, the FIR coefficients can also represent a longer pulse, for example the raised cosine pulse
p(t) = p2(t) = 0.5(1− cos(πt/T ), 0 < t < 2T, 0 otherwise and will have 2fsT taps in this case. Note
that the raised cosine pulse extends over 2 symbol periods, so that adjacent symbol pulses will
overlap.

The message waveform will appear as shown before and below, sampled at fsT samples per symbol.

Thus we can generate time domain raised cosine pulses p2(t) using either a sequence of square pulses
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or a sequence of impulses.

Pulse shaping of a impulses with a pulse shaping filter is shown in the GRC flowgraph below. The
sample rate fs is set to 100K, the symbol rate 1/T=1000 so that fsT=100.

The linear feedback shift register (GLFSR) data source generates one sample for each data symbol.
These samples are filtered by an interpolating FIR filter that yields one sample Ak = ±1 followed
by fsT −1=99 samples set to zero, so that the fsT=100 samples per symbol have only one non-zero
value. This interpolating FIR filter will have only one non-zero tap and fsT − 1=99 zero taps. The
output of this filter is a sequence of impulses at a rate 1/T=1000 Hz and sampling rate fs=100K.
This output is filtered by a low pass filter with cutoff 500 Hz and transition width 1000 Hz whose
impulse response approximates the time domain RC2 pulse shape.
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6.4.4 Raised Cosine filter in frequency domain

p(t)can be chosen to obtain a particular shape in the time domain, as shown in the previous section.
However, p(t)can also be chosen to have a particular shape in the frequency domain, i.e. a frequency
response P (f) = H(f). One example choice is a raised cosine shape in the frequency domainH(f) =
HRRC(f), as per the figure below.

The frequency response can be varied with different values of the roll-off factorβ and the symbol
time T. The roll-off factor is a measure of the excess bandwidth δf

of the pulse shaping filter, the bandwidth beyond the Nyquist bandwidth 1/2T . Thus β is defined

β =
δf

1/2T
= 2Tδf

The impulse response h(t) is a sinc shape extending for a time usually truncated to 6T

as shown in the figure below
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When β = 1, H(f) = [1 + cos(πfT )]T/2, |f | ≤ 1/T . Note that this equation has the same form as
the time domain pulse p2(t) = [1 − cos(πt/T )]/2for t{0, 2T}. The sign difference results from the
different limits on the variables t and f.

A sequence of these sinc-shaped pulses will overlap, as shown in the figure below for a data sequence
11111.

Because of the sinc shaped pulses, the message waveform will have variable peak amplitude as shown
below.
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6.4.5 Square Root Raised Cosine filter

A receiver is optimum if the receiver filter matches the transmit filter. Thus we often use a Square
Root Raised Cosine (RRC) pulse shaping filter HRRC(f) at the transmitter and another RRC filter
at the receiver, so that the combination of the two filters yields a Raised Cosine (RC) pulse shape
at the receiver output.

HRC(f) = H2
RRC(f)

The RRC filter impulse response looks similar to the RC impulse response but with lower sidelobes.
The mathematical expression for hRRC(t) is

Pulse shaping of data using an RRC filter is shown in the GRC flowgraph below.

The RRC blocks does the interpolation by 100 to yield 100 samples per symbol time T.

The sample rate fs is set to 100K. fsT is set to 100, so that the symbol rate 1/T=1000.
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6.4.6 Summary of pulse shaping methods

Pulse shaping can be done in multiple ways. Here we consider three methods:
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1. (a) i. A. Generate square pulses and low pass filter, commonly used in analog systems.

B. Generate impulses and low pass filter with time domain RC FIR filter.

In this case the RC FIR filterp(t)is strictly time limited with zero value outside a time range and
P (f)is theoretically has sidelobes spread out at all frequencies. In practice, the sidelobe amplitude
versus frequency will be negligible beyond frequencies greater than a few multiples of 1/T Thus
P (f)will not spread significantly in bandwidth beyond a few multiples of 1/T

1. (a) i. A. Generate impulses and filter with frequency domain RRC FIR filter.

In this case P (f)is strictly band limited with zero value outside a frequency range and p(t) theo-
retically has sidelobes spread out over all time. In practice, the sidelobe amplitude versus time will
be negligible beyond times greater than a few multiples of T Thus the FIR filter length is chosen
so that the sinc-shaped pulsep(t)does not spread in time beyond a few multiples of T . The RRC
shape is preferred over the RC shape in the frequency domain so that the receiver RRC filter can
be matched to the transmit RRC filter, yielding an overall RC system (transmitter plus receiver)
response.

1. (a) i. A. The middle ground between 2 and 3 above is to generate impulses and use a
filter with Gaussian shaped impulse response. A Gaussian pulse shape will be
Gaussian in both time and frequency domains,

The Gaussian pulse theoretically spreads over all frequencies and all time, since the Gaussian tails
extend to ±∞. In practice, Gaussian pulses will be both time limited and bandwidth limited.
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6.5 Eye diagrams

The received message waveform after filtering by both the transmitter pulse shaping filter and the
receiver low pass or matched filter is a sequence of pulses that in general will have a variable peak
amplitude. The message waveform may be further varied by the channel filter (causing waveform
distortion), noise and interference.

To estimate the probability of a decision error, it is useful to view the message waveform modulo
the symbol time T . This can be achieved in practice by triggering the scope on the zero crossings
of the message waveform. The resulting picture is a so-called eye diagram.

An ideal eye diagram is shown below for the two cases:

1. (a) i. A. time domain RC pulse shape on the left and

B. the frequency domain RRC pulse shape (with sinc-shaped pulses) on the right.

In practice, these eye diagrams are further modified by the channel filter, noise and interference,
resulting in a general eye diagram as shown below.
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The eye must be open to achieve a low probability of decision error.

The decision device samples this waveform at the time of maximum amplitude for each symbol and
then decides what is the value of the symbol (1 or -1 for a binary two level eye diagram above, or

±1,±3 for a 4 level eye diagram below ).

An eye diagram with some noise is shown below.

This completes the discussion of baseband data transmission, digital messages, pulse shaping and
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eye diagrams.



Chapter 7

Phase shift keying

Phase shift keying is a digital form of general phase modulation, where the carrier phase is modulated
in step with the message waveform. The word “keying” is historical and refers to the on-off keying
done by a Morse code key acting as a switch.

For phase modulation, the complex envelope

s̃(t) = a(t)ejφ = a(t) cosφ+ ja(t) sinφ
= i(t) + jq(t)

has a constant amplitudea(t) = Ac and time varying phase φ(t) .

For digital phase modulation, φ(t)is selected from a finite number of discrete values at the discrete
symbol times kT The discrete values of the complex envelope at the times kTplotted in the 2-D
complex plane is called a signal constellation.

In general,φ(t)will assume other values for times t in between the discrete symbol times kT .

Binary phase shift keying (BPSK) uses two discrete phase values, and Quadrature phase shift keying
(QPSK) uses four discrete phase values. In general, n-PSK uses n discrete phase values.

In practice, as will be seen later, for BPSK and QPSK with any pulse shape other than a square
pulse, both the amplitude and phase will vary with time.

159
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PSK can be combined with amplitude shift keying (ASK) to yield amplitude-phase keying (APK).
One form of APK is Quadrature Amplitude Modulation (QAM). One example is 16QAM that
uses 16 discrete amplitude and phase values. The signal constellation for 16QAM is shown below.
This constellation has 12 discrete phase values and 3 discrete amplitude values. Each point in the
constellation represents 4 bits of information.

7.1 BPSK Transmitter

In this section, we show the formulas for a BSPK signal derived from the general complex signal
notation. We also show how BPSK is a special case of DSB-SC.

A general signal

s(t) = Re[a(t)ejφej2πfct] = Re[s̃(t)ej2πfct],

where the complex envelope

s̃(t) = a(t)ejφ = a(t) cosφ+ ja(t) sinφ
= i(t) + jq(t)

and i(t), q(t) are obtained from the message signal.

Recall that for DSB-SC, we choose i(t) = m(t)

andq(t) = 0 , so that

s(t) = Re{s̃(t)ej2πfct} = Re{[i(t) + jq(t)]ej2πfct}
= Re{m(t)ej2πfct} = m(t) cos 2πfct

For DSB-SC, s̃(t) = m(t) , i.e. the complex envelope is equal to the (real) message.

We can choose m(t) = cos 2πfmt to represent a 10 alternating digital message during one cycle of
the cos wave, representing a 1 bit when m(t) = 1 and a 0 bit when m(t) = −1 Thus fm = 1/2T and
T is the symbol time.

We could also choose m(t) to be a square wave with period 2T The frequency of the cos (or square)
wave is one-half the symbol rate.
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For binary phase shift keying (BPSK), we also choose i(t) = m(t) and q(t) = 0 and we choose

m(t) = A0p(t) +A1p(t− T ) +A2p(t− 2T ) + ... =
∑

k

Akp(t− kT )

If p(t) is chosen to be a square pulse and Ai = +1, i even ,−1, i odd then m(t)is a square wave with
period 2T .

Thus BPSK is created in the same way as DSB-SC, i.e. multiply the message by the carrier.

The BPSK signal is written

s(t) = Re[m(t)ej2πfct] = m(t) cos 2πfct =
∑

k

Akp(t− kT ) cos 2πfct

The signal constellation for BPSK consists of two points located at Ak = ±1, one at +1 and one at
-1, as shown in Figure 2.

Figure 2 BPSK Constellation

In polar form Ak = ake
jφk , so that with Ak = ±1 , ak = 1 and φk = nπ are the 2 possible phases of

a BPSK signal.

For BPSK, s̃(t) = m(t), i.e. the complex envelope is equal to the message.
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The spectrum of the BPSK signal will depend on the data sequence and pulse shapei(t) = m(t) =∑
k Akp(t− kT ).

For an alternating sequence Ak = 1, k odd, Ak = −1, k even, with time domain RC2 raised cosine
pulse shape p(t) = p2(t) = [1 − cos(πt/T )]/2 , m(t) = cosπt/T = cos 2πfmt where fm = 1/2T , so
that in this case, the BPSK spectrum is the same as for DSB-SC with single tone modulation with
delta function spikes at fc ± fm = fc ± 1/2T

In general, the data sequence is random and can be modelled as the output of a linear feedback shift
register. The spectrum has a sinc shape as shown below for 2-PSK, where the left axis is the carrier
frequency fc and the spectrum is symmetrical about fc. The mirror image at frequencies below fc
is not shown.

The full symmetrical spectrum is shown below on a dB scale
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7.1.1 Real BPSK signal

To create a real BPSK signal in GRC at intermediate frequency f1 using these equations, we carry
out two steps:

Generate the real baseband signal i(t) = m(t) =
∑
k Akp(t− kT )

1. (a) i. A. Upconvert it to the desired carrier frequency by multiplying by cos 2πf1t =
0.5{ej2πfct + e−j2πfct} to yields(t) = Re[m(t)ej2πf1t] = m(t) cos 2πf1t

m(t)→ ⊗→ s(t)
↑

cos 2πf1t

The spectrum of s(t) will be centered at ±f1 and has both positive and negative frequency compo-
nents.

A GRC flowgraph for real BPSK is shown below.
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The real BPSK signal can also be generated as follows, recalling i(t) = m(t) and q(t) = 0

i(t)→ ⊗⇒ s̃1(t)⇒ Re→ i(t) cos 2πf1t
⇑
e2πf1t

The real BPSK signal may be written

s(t) = i(t) cos 2πf1t
for p(t) = 1 for 0 ≤ t ≤ T (square pulse)
s(t) = ak cos(2πf1t+ φk) for kT ≤ t ≤ (k + 1)T
= cos(2πf1t+ nπ) for kT ≤ t ≤ (k + 1)T

where the value of n is chosen to represent the phase at time k.

7.1.2 Complex BPSK signal

To create a complex (analytic) BPSK signal in GRC at intermediate frequency f1 using these
equations, we carry out two steps:

1. (a) i. A. Generate the real baseband signal i(t) = m(t) =
∑
k Akp(t− kT )

B. Upconvert it to the desired carrier frequency by multiplying by ej2πf1t . The
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results is a complex (analytic) signal .

s̃1(t) = i(t)ej2πf1t

= i(t) cos 2πf1t+ j[i(t)sin2πf1t]
= i1(t) + jq1(t)

m(t)→ ⊗→ s̃1(t) = i1(t) + jq1(t) = i(t)e2πf1t

⇑
e2πf1t

The spectrum of s̃1(t)will be centered atf1 . Since the signal is analytic, there is no negative
frequency component at −f1.

A GRC flowgraph is shown below, where the message a square wave 1010 data sequence. In this
flowgraph, the message is set to be

m(t) + jm(t) but could also have been set to m(t) + j0 by using a null source connected to the lower
input of the Float to Complex block.

7.1.3 BPSK at radio frequency (RF)

The USRP sink block with complex input s̃1(t)is used to transmit the BPSK signal near a radio
frequency (RF) fc. The USRP transmitter multiplies s̃1(t) by ej2πfct and takes the real part to
generate a real RF signal centered at f1 + fc and − f1 − fc.

Recall from above that i1(t) = i(t) cos 2πf1t, q1(t) = i(t) sin 2πf1t and i(t) = m(t) =
∑
k Akp(t−kT )
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The real BPSK signal at RF is written

s(t) = Re{s̃1(t)ej2πfct} = Re{[i1(t) + jq1(t)]ej2πfct}
= i1(t) cos 2πfct− q1(t) sin 2πfct
= i(t) cos 2πf1t cos 2πfct− i(t) sin 2πf1t sin 2πfct
= i(t) cos 2π(fc + f1)t

.

We can get the same result using the exponentials instead of the sine and cosines

s(t) = Re{s̃1(t)ej2πfct} = Re{i(t)ej2πf1tej2πfct}
= Re{i(t)ej2π(f1+fc)t} = i(t) cos 2π(fc + f1)t

BPSK at RF is generated as follows

i(t)→ ⊗⇒ s̃1(t) = i1(t) + jq1(t)⇒ ⊗⇒ Re→ i(t) cos 2π(fc + f1)t
⇑ ⇑
e2πf1t e2πfct

The USRP sink block does the second complex multiply and taking the real part.

The GRC flowgraph is the same as the complex BPSK above with a USRP sink block in place of
the Virtual Sink.

The real RF signal s(t) is centered at f1 + fc and − f1 − fc.

Since the signal is real, there are both positive and negative frequency components.

To transmit the BPSK signal at fc the USRP sink block could also have used the complex input
s̃(t) = i(t) = m(t) with the imaginary part set to zero.

In this case the USRP transmitter multiplies s̃(t) by ej2πfct and takes the real part to generate a real
RF signal centered at fc and − fc. However, this practice is not recommended, since s̃(t) = m(t)
may contain DC, and the USRP does not pass DC.

7.2 BPSK Receiver

To receive the BPSK signal, the USRP source block is used to downconvert the RF signal to complex
baseband i(t) + jq(t)

We can also simulate the BPSK receiver within GNU Radio without using the USRP source block.

The simulation is done by using the BPSK signal generated at intermediate frequency f1

7.2.1 Real BPSK signal receiver

We first work with the real BPSK signal s(t) = Re[m(t)ej2πf1t] = m(t) cos 2πf1t
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We use a standard IQ receiver set up forf1 with complex output i(t) + jq(t)

s(t)→⇒ ⊗⇒ LPF ⇒ i(t) + jq(t)
⇑ s̃1(t)

e−j2πf1t

If there is no frequency or phase offset, then q(t) = 0

The IQ receiver above is implemented with a complex multiplier. Low pass filters will be required
in the complex case, since the input is real.

In GNURadio, the real BPSK signal s(t) is one input of a float to complex block, with the second
input set to zero (null source), and the resulting complex signal output (with the imaginary part set
to zero) is connected to one input of a complex multiplier.

The IQ receiver can be implemented with real cosines and sines and low pass filters.

With a suitable low pass filter, the received datai(t) + jq(t) at sampling times t = kT + is Ak = ±1
(real), where is adjusted to sample in the middle of the pulsep(t) .

is a timing offset to sample the data away from the transitions between different bits.

The simplest receiver assumes there is no frequency or phase offset, and can be implemented with a
real local oscillator

s(t)→⇒ ⊗⇒ LPF ⇒ i(t)
⇑

cos 2πf1t

The GRC example implementation shown below uses a square wave local oscillator , but could also
have used a cosine wave. There is no reason to choose one or the other. Either will work, since the
low pass filter will take out all harmonics of the square wave.
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7.2.2 Complex BPSK signal receiver

We can also receive a complex BPSK signal

s̃1(t) = i(t)ej2πf1t

= i(t) cos 2πf1t+ j[i(t) sin 2πf1t]
= i1(t) + jq1(t)

Again, we use a standard IQ receiver with complex local oscillator. In this case, we can use the
complex IQ receiver that multiplies s̃1(t)by e−j2πf1t(note the minus sign for downconversion). An
LPF is not needed. If there is no frequency or phase offset, then q(t) = 0

s̃1(t) ⇒ ⊗⇒ i(t) + jq(t)
⇑
e−j2πf1t

The GRC flowgraph below uses a complex local oscillator.

7.2.3 BPSK receiver at RF

A BPSK receiver at RF using the USRP would have a GRC flowgraph as above, except that the
virtual source is replaced with a USRP source.

In the diagram below, the USRP source block carries out the complex downconversion with local
oscillator at fc to produce the complex baseband signal s̃1(t) that is subsequently processed by the
GRC flowgraph.

s(t)→ ⊗⇒ LPF ⇒ s̃1(t) ⇒ ⊗⇒ i(t) + jq(t)
⇑ ⇑
e−j2πfct e−j2πf1t
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The USRP source block actually does two complex downconversions as shown below.

The Gigabit Ethernet output contains the I and Q samples of s̃1(t)

7.3 QPSK Transmitter

Recall that we can send separate messages m1(t),m2(t)on the I and Q channels, i.e. i(t) =
m1(t), q(t) = m2(t)

We can choose m1(t) and m2(t)to be separate digital messages with the same kind of waveform as
shown above. When we use both the I and Q channels, the modulation is called Quadrature Phase
Shift Keying (QPSK).

To write an expression for QPSK, we can use the same general form as for BPSK above, except that
the constants representing the data are now complex instead of real.

A digital message can be written as a complex envelope

s̃(t) =
∑

k

Ckp(t− kT ) = C0p(t) + C1p(t− T ) + C2p(t− 2T ) + .

where s̃(t) = i(t) + jq(t) is a complex message waveform,

Ck = Ak + jBk = ake
jφk is the digital data, where Ak = ak cosφk and Bk = ak sinφk

From the expression for s̃(t), we see that for the period 0 < t < T ,
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s̃(t) = A0 + jB0 = a0e
jφ0 is a complex constant. For the next period T < t < 2T , s̃(t) = A1 + jB1 =

a1e
jφ1 , etc. In general, for the time period kT < t < (k + 1)T s̃(t) = Ak + jBk = ake

jφk is a fixed
amplitude and phase.

In rectangular form, s̃(t) = i(t) + jq(t) , where

i(t) =
∑

k

Akp(t− kT ) = A0p(t) +A1p(t− T ) +A2p(t− 2T ) + .

and

q(t) =
∑

k

Bkp(t− kT ) = B0p(t) +B1p(t− T ) +B2p(t− 2T ) + .

For QPSK, we choose Ak = ±1 and Bk = ±1, so that Ck = ±1± j.

There are 4 possible values of Ckdepending on whether a logic 00, 01, 10 or 11 was sent.

The signal constellation for QPSK is shown in Figure 3 and consists of the 4 points located at
Ck = ±1± j

Figure 3 QPSK Constellation

In polar form Ck = Ak + jBk = ake
jφk , so that with Ak = ±1 and Bk = ±1, ak =

√
2 and φk =

(2n−1)π
4 are the 4 possible phases of a QPSK signal.

7.3.1 Real QPSK signal

To create a real QPSK signal in GRC at intermediate frequency f2 using these equations, we generate
the complex baseband signal s̃(t) = i(t) + jq(t) and upconvert it to the desired carrier frequency
with a standard (real) IQ transmitter

The result is
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s(t) = i(t) cos 2πf2t− q(t) sin 2πf2t
for p(t) = 1 for 0 ≤ t ≤ T (square pulse)
s(t) = ak cos(2πf2t+ φk) for kT ≤ t ≤ (k + 1)T

=
√

2 cos(2πf2t+ (2n−1)π
4 ) for kT ≤ t ≤ (k + 1)T

where the value of n is chosen to represent the phase at time k.

In the figure below, the top waveform is the first term

i(t) cos 2πf2t

the middle waveform is the second term

−q(t) sin 2πf2t

and the bottom waveform is the real QPSK signal s(t).

The spectrum of s(t) will be centered at ±f1 and has both positive and negative frequency compo-
nents.

A GRC flowgraph of the real QPSK transmitter is shown below
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The result at the virtual sink output is

s(t) = i(t) cos 2πf2t− q(t) sin 2πf2t

The real QPSK signal can also be generated using complex notation

m1(t) + jm2(t) = s̃(t) = i(t) + jq(t)⇒ ⊗⇒ s̃2(t)⇒ Re→ s(t)
⇑

ej2πf2t

7.3.2 Complex QPSK signal

To create an complex QPSK signal in GRC at intermediate frequency f2 using these equations,
we create the complex baseband signal s̃(t) = i(t) + jq(t) and upconvert it to the desired carrier
frequency by multiplying by ej2πf2t . The result is

another complex signal

s̃2(t) = [i(t) + jq(t)]ej2πf2t

= i(t) cos 2πf2t− q(t) sin 2πf2t+ j[q(t) cos 2πf2t+ i(t) sin 2πf2t]
= i2(t) + jq2(t)

The complex QPSK signal is generated as follows

m1(t) + jm2(t) = s̃(t) = i(t) + jq(t)⇒ ⊗⇒ s̃2(t)
⇑

ej2πf2t

A GRC flowgraph is shown below. The complex messagem1(t) + jm2(t) is multiplied by a complex
local oscillator ej2πf2t
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We can create a second QPSK signal at a different intermediate frequency f3in the same way to
yield

s̃3(t) = i3(t) + jq3(t)

We can create a composite signal consisting of several QPSK signals at f2, f3 etc.

7.3.3 QPSK at radio frequency (RF)

The upconversion of a QPSK signal to a radio frequency (RF) wave atfc is the function of the USRP
sink block (standard IQ transmitter) with inputs i2(t) and q2(t) .

The USRP transmitter accepts a complex baseband signal s̃2(t) and multiplies it by ej2πfct and
takes the real part to generate a real RF signal s(t).

s̃(t)⇒ ⊗⇒ s̃2(t)⇒ ⊗⇒ Re→ s(t)
⇑ ⇑

ej2πf2t ej2πfct

s(t) = i(t) cos 2π(fc + f2)t− q(t) sin 2π(fc + f2)t

Recall m1(t) + jm2(t) = s̃(t) = i(t) + jq(t)and s̃2(t) = i2(t) + jq2(t)

The USRP sink block does the second complex multiply and takes the real part.

The GRC flowgraph is the same as the complex QPSK above with a USRP sink block in place of
the Virtual Sink.
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Compare this to the BPSK case, where q(t) = 0

i(t)→ ⊗⇒ s̃1(t)⇒ ⊗⇒ Re→ i(t) cos 2π(fc + f1)t
⇑ ⇑
e2πf1t e2πfct

Similarly, the entire group of QPSK signals s̃2(t) + s̃3(t) can be upconverted to RF by the USRP
sink block.

The USRP sink block could also have used the complex input s̃(t) = i(t) + jq(t)

to transmit the QPSK signal at fc In this case the USRP transmitter multiplies s̃(t) by ej2πfct and
takes the real part to generate a real RF signal centered at fc and − fc. However, this practice is
not recommended, since s̃(t) = i(t) + jq(t) may contain DC, and the USRP does not pass DC.

The waveforms are represented as shown below in both complex baseband and real passband.
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7.4 QPSK Receiver

To receive the QPSK signal, the USRP source block is used to downconvert the RF signal to complex
baseband i(t) + jq(t)

We can also simulate the QPSK receiver within GNU Radio without using the USRP source block.

The simulation is done by using the QPSK signal generated at intermediate frequency f2

7.4.1 Real QPSK signal

We can receive the real QPSK signal

s(t) = i(t) cos 2πf2t− q(t)sin2πf2t

We use a standard IQ receiver set up forf2 with complex output i(t) + jq(t)

This IQ receiver can be implemented with real cosines and sines and low pass filters.

With a suitable low pass filter, the received data i(t) at sampling times t = kT + is Ak = ±1 and
the received data q(t) is Bk = ±1, where is adjusted to sample in the middle of the pulse p(t) The
received datai(t) + jq(t) at sampling times t = kT + is Ck = ±1± j

s(t)→⇒ ⊗⇒ LPF ⇒ i(t) + jq(t)
⇑ s̃2(t)

e−j2πf2t

The IQ receiver above is implemented with a complex multiplier. Low pass filters will be required
in the complex case, since the input is real.

The IQ receiver can be also implemented with real cosines and sines and low pass filters.

A GRC flowgraph of the real QPSK receiver is shown below.
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An XY scope plot will show the signal constellation. At sampling times t = kT + the constellation
shows Ck = ±1± j

If the signal is not sampled and we display the received datai(t)+jq(t) at all times t, then the signal
constellation shows the paths between the 4 points Ck = ±1± j
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The exact trajectories (shape of the path curves) will depend on the pulse shaping filter.

7.4.2 Complex QPSK signal

We can also receive the complex QPSK signal

s̃2(t) = [i(t) + jq(t)]ej2πf2t

= i(t) cos 2πf2t− q(t) sin 2πf2t+ j[q(t) cos 2πf2t+ i(t) sin 2πf2t]
= i2(t) + jq2(t)

Again, we use a standard IQ receiver. In this case, we can use the complex IQ receiver that multiplies
s̃2(t)by e−j2πf2t (note the minus sign for downconversion). An LPF is not needed.

s̃2(t) ⇒ ⊗⇒ s̃4(t) = i(t) + jq(t)
⇑
e−j2πf2t

s̃4(t) = i4(t) + jq4(t) = s̃2(t)e−j2πf2t = [i(t) + jq(t)]ej2πf2te−j2πf2t

= i(t) + jq(t)

A GRC flowgraph is shown below. The XY scope mode is used to show the signal constellation. A
practical receiver will include a low pass or RRC matched filter.

The received datai(t) + jq(t) at sampling times t = kT + is Ck = ±1± j

7.4.3 QPSK signal at radio frequency (RF)

A BPSK receiver at RF using the USRP would have a GRC flowgraph as above, except that the
virtual source is replaced with a USRP source.

The USRP receiver multiplies the real valued radio frequency signals(t) by ej2πf2t to generate s̃2(t)

In the diagram below, the USRP source block carries out the complex downconversion with local
oscillator at fc and low pass filters to produce the complex baseband signal s̃2(t) that is subsequently
processed by the GRC flowgraph.
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s(t)→ ⊗⇒ LPF ⇒ s̃2(t) ⇒ ⊗⇒ i(t) + jq(t)
⇑ ⇑
e−j2πfct e−j2πf2t

The USRP source block has a complex output s̃2(t)

The USRP source block actually does two complex downconversions as shown below.

The Gigabit Ethernet output contains the I and Q samples of s̃2(t)

The complex signal output from the USRP source block s̃2(t) is bandlimited to the sampling rate of
the USRP source block. The USRP source block output can be recorded to a file and used again at
a later time. This file source will have the same sampling rate and bandwidth as the USRP source
block used to record it.

With a sampling rate of 200 kHz and complex samples, the bandwidth will be 200 kHz (because the
complex signal spectrum is not symmetric and does not have redundant mirror-image positive and
negative frequencies)

We can “tune in” (receive) any of the QPSK signals in this bandwidth by shifting the spectrum of
the USRP source output using GRC. We shift by f2 Hz by multiplying the USRP source output
(complex signal) s̃2(t)by e−j2πf2t = cos 2πf2t− j sin 2πf2t to produce i(t) + jq(t), so that the signal
that first appeared at f2Hz now appears at zero Hz.



CHAPTER 7. PHASE SHIFT KEYING 179

With a suitable low pass filter, the received datai(t)+jq(t) at sampling times t = kT+ is Ck = ±1±j,
where is adjusted to sample in the middle of the pulse p(t)

7.5 QPSK with amplitude, frequency and phase errors in
the receiver

7.5.1 QPSK signal at particular time instant

For a real QPSK signal for a particular time instant t = kT + we can write

s(t) = Ak cos 2πfct+Bk sin 2πfct

where Ak, Bk = ±1

Proof of why we can write this:

s(t) = Re{s̃(t)ej2πfct}

From PSK theory: A digital message can be written as a complex envelope

s̃(t) =
∑

k

Ckp(t− kT ) = C0p(t) + C1p(t− T ) + C2p(t− 2T ) + .

where

s̃(t) = i(t) + jq(t) is a complex message waveform,

Ck = Ak + jBk = ake
jφk is the digital data, where Ak = ak cosφk and Bk = ak sinφk

At sampling time t = mT + ,

s̃(t = mT + ) =
∑
k Ckp((m− k)T + )

= C0p(mT + ) + C1p((m− 1)T + ) + C2p((m− 2)T + ) + .
= Cm−1p(− T ) + Cmp() + Cm+1p( + T )
= Cm

Only one term survives since p(t) 6= 0 only for t '

Changing variables m→ k we can write at time t = kT +

s̃(t) = Ck = Ak + jBk
= i(t) + jq(t)|t=kT+

i(t)|t=kT+ = i(t = kT + ) = Ak
q(t)|t=kT+ = q(t = kT + ) = Bk
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s(t) = Re{s̃(t)ej2πfct}
= Re{(Ak + jBk)(cos 2πfct+ j sin 2πfct)}
= Ak cos 2πfct−Bksin 2πfct
= i(t) cos 2πfct− q(t)sin 2πfct|t=kT+

In polar form s̃(t) = Ck = Ak + jBk = ake
jφk , so that with Ak = ±1 and Bk = ±1, ak =√

2 and φk = (2n−1)π
4 are the 4 possible phases of a QPSK signal.

7.5.2 QPSK receiver local oscillator with frequency error

In this example, we show what happens when the receiver local oscillator ILO(t) − jQLO(t) =
e−j2πfLOt runs at fLO = fc + ∆f instead of fc

We can consider this for the analog IQ local oscillator in the USRP. However, this is not normally
done because the USRP cannot pass the DC that arises from the complex data symbols. s̃(t) =
Ck = Ak + jBk = i(t) + jq(t)|t=kT+

Here we consider a frequency error within GRC where the complex baseband signal is available from
the USRP source block.

We assume that the USRP source block output is a complex QPSK signal with message waveform
s̃(t) = i(t) + jq(t)and data symbols s̃(t) = Ck = Ak + jBk = i(t) + jq(t)|t=kT = ±1± j

The complex baseband QPSK signal from the USRP source block output appears on a carrier
frequency f2 as shown in the complex QPSK transmitter section above

s̃2(t) = [i(t) + jq(t)]ej2πf2t

= i(t) cos 2πf2t− q(t) sin 2πf2t+ j[q(t) cos 2πf2t+ i(t) sin 2πf2t]
= i2(t) + jq2(t)

We use the complex IQ receiver that multiplies s̃2(t)by e−j2πf2t (note the minus sign for downcon-
version). An LPF is not needed. However, in this case we consider a frequency error (or tuning
error) ∆f in the local oscillator , so that we multiply s̃2(t)by e−j2π(f2+∆f)t

s̃2(t) ⇒ ⊗⇒ s̃4(t) = i4(t) + jq4(t)
⇑
e−j2π(f2+∆f)t

s̃4(t) = i4(t) + jq4(t) = s̃2(t)e−j2πf2t = [i(t) + jq(t)]ej2πf2te−j2π(f2+∆f)t

= [i(t) + jq(t)]e−j2π∆ft

At the sampling time t = kT +
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s̃4(t) = [i(t) + jq(t)]e−j2π∆ft|t=kT+ = [Ak + jBk]e−j2π∆f(kT+)

in polar form
s̃4(t) = Cke

−j2π∆ft = ake
jφke−j2π∆ft = ake

j(φk−2π∆ft)|t=kT+

A GRC flowgraph is shown below. In this example, the frequency is set to -16K, and is connected
to a GUI slider to test the tuning error.

For perfect tuning with ∆f = 0, the received datas̃4(t) at sampling times t = kT + is Ck = ±1± j

With a tuning error, the transmitted phase φk is received as φk−2π∆ft|t=kT+ = φk−2π∆f(kT + )

The phase rotates with time at a rate 2π∆f radians per second. This rotation can be observed by
moving the GRC slider. An animated GIF would be useful here.

In order to receive the correct data symbols Ck = ±1± j it is necessary to adjust the tuning error to
zero. This can be done manually with the slider. In a practical receiver, a frequency offset correction
(or phase tracking) circuit is employed, also called carrier acquisition and carrier tracking.

An example of such a circuit is shown below. The operation of this circuit is beyond the scope of
the present work.
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7.5.3 QSPK receiver local oscillator with amplitude and phase errors

The receiver local oscillator can be written ILO(t)− jQLO(t) = e−j2πfLOt if it is perfect. However,
for this case, assume it has the correct frequency fLO = fc , but has amplitude and phase errors, so
that we can write

ILO(t) = (1 + δ/2) cos(2πfLOt− θ/2)
QLO(t) = (1− δ/2) sin(2πfLOt+ θ/2)

This type of error is likely to occur in the analog complex downmixer. It will not occur unintention-
ally in GRC. The effect of these errors can be modelled and tested in GRC.

Exercise:

Draw the constellation diagram of the received signals assuming that θ = 30o, δ = 0.2 and compare
to the ideal constellation with θ = 0o, δ = 0. Show all calculations needed.

Implement this receiver in GNURadio GRC and include the flowgraph.

This problem can be solved using either real or complex notation, show the signals both ways.

Real notation, find output of I and Q branches of real QPSK receiver and plot for different values
of the data Ak = ±1, Bk = ±1

s(t) = Ak cos 2πfct−Bk sin 2πfct = i(t) cos 2πfct− jq(t) sin 2πfct
at sampling time t = kT + , i(t) = Ak, q(t) = Bk

ILO(t) = (1 + δ/2) cos(2πfLOt− θ/2)
QLO(t) = (1− δ/2) sin(2πfLOt+ θ/2)

I(t) = s(t)ILO(t) = [Ak cos 2πfct−Bk sin 2πfct] · (1 + δ/2) cos(2πfLOt− θ/2)
= Ak(1 + δ/2) cos 2πfct cos(2πfLOt− θ/2)−Bk(1 + δ/2) sin 2πfct cos(2πfLOt− θ/2)
= 0.5Ak(1 + δ/2) cos(θ/2)− 0.5Bk(1 + δ/2) sin(θ/2)

Q(t) = s(t)QLO(t) = [Ak cos 2πfct−Bk sin 2πfct] · (1− δ/2) sin(2πfLOt− θ/2)
= Ak(1− δ/2) cos 2πfct sin(2πfLOt− θ/2)−Bk(1− δ/2) sin 2πfct sin(2πfLOt− θ/2)
= 0.5Ak(1− δ/2) sin(θ/2)− 0.5Bk(1− δ/2) cos(θ/2)

Complex notation at sampling time

ILO(t) + jQLO(t) = (1 + δ/2) cos(2πfLOt− θ/2) + j(1− δ/2) sin(2πfLOt+ θ/2)

s(t) = Re{s̃(t)ej2πfct}
s̃(t) = Ak + jBk = ake

jφk

I(t) + jQ(t) = s̃(t)ej2πfct[ILO(t)− jQLO(t)]
= (Ak + jBk)ej2πfct[ILO(t)− jQLO(t)]
= (Ak + jBk)ej2πfct[(1 + δ/2) cos(2πfLOt− θ/2)− j(1− δ/2) sin(2πfLOt+ θ/2)]
fill in missing steps
I(t) = Ak(1 + δ/2) cos(θ/2)−Bk(1 + δ/2) sin(θ/2)
Q(t) = Ak(1− δ/2) sin(θ/2)−Bk(1− δ/2) cos(θ/2)
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Substituting numbers θ = 30o, δ = 0.2

Ak Bk I(t) Q(t)
1 1 1.347 1.102
1 -1 0.778 -0.636
-1 1 -0.778 0.636
-1 -1 -1.347 -1.102

The result is that with amplitude and phase errors, the originally square constellation is distorted
and looks like a trapezoid.

7.6 Differential BPSK

In this section we consider differential BPSK, in which the information is encoded in the phase
difference between two adjacent symbols. D-BPSK (also written DPSK) has the advantage that the
absolute phase (i.e. a coherent reference signal) is not required. In practice, the absolute phase is
not generally available unless the transmitter and receiver are phase-locked via GPS.

Terminology : If absolute phase is required, the receiver is coherent. If only phase differences are
required, the receiver is non-coherent.

7.6.1 DBPSK with square pulse shape

A DBPSK waveform with square pulse shape is shown in the diagram below with one cycle of the
carrier per bit time. This waveform is not used in practical systems because the sharp transitions
will cause the bandwidth to be wider than necessary.

In this figure, the carrier wave is cos 2πfct+ φ where φ = 0 or π
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The phases are marked below the waveform.

π0000π00

From the phases π0000π00 the transmitted data is 10000100.

The message bits above the figure are the result of differentially decoding the transmitted data.

The message bits above the figure are shifted to the right by a half cycle of the carrier wave.

To see how the differential decoding works in this case, shift the message bits a half cycle to left so
the bits are right on top of any change in phase.

Then the leftmost “1” bit is a reference followed by 1 = change, 0 = no change.

From the phases π0000π00 the transmitted data is 10000100.

Differential decoding of the transmitted data is the message data

The transmitted data is the differentially encoded message data

10000100 transmitted data

X1000110 diff decoded message data shown in the figure, where X is arbitrary.

10000100 diff encoding of diff decoded message data should yield transmitted data

In the figure below, differential decoding is illustrated with 3 cycles of carrier per symbol time. The
differential decoder can be implemented with a delay and multiply operation with a delay of one
symbol time. The carrier is removed by a low pass filter. In this example we have operated directly
on the signal waveform, we do not need to demodulate first before doing the differential decoding.
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A is the transmitted waveform, B is the delayed waveform, C is the output resulting from a delay
and multiply operation, and D is the output of a decision device (slicer) that decides 1 or 0.

7.6.2 D-BPSK with RC2 time domain pulse shape

In this example, we show DBPSK waveforms with an RC2 time domain pulse shape, where the pulse
spans two symbol periods.

One application of this waveform is low-rate data communication on the shortwave bands. It is used
for live contacts on the amateur radio bands at a data rate of R=31.25 baud, corresponding to a
keyboard speed of approximately 50wpm.

This mode uses a differential binary encoding where reversal of the carrier phase indicates the symbol
‘0’ and no change in the carrier phase indicates the symbol ‘1’. Figure 1 shows an example of a
modulated BPSK31 waveform. For a string of ‘1’ symbols, the modulated waveform is equivalent to
just transmitting the carrier. For a string of ‘0’ symbols, the modulated waveform is equivalent to
transmitting the DSB-SC signal:

s(t) = A cos 2πfct cos 2πfmt = A
2 cos 2π(fc + fm)t+ A

2 cos 2π(fc − fm)t where fm = R/2 = 15.625

Therefore, the bandwidth of the BPSK31 signal is only 31.25 Hz. This allows many operators to
make contacts within a narrow bandwidth without interfering with each other.
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Figure 1 BPSK31 Waveform

BPSK31 uses a variable-length coding to encode the alphabet. More common characters use shorter
codes while less common characters use longer codes. Additionally, each code must begin and end
with a ‘1’ symbol and may not contain two or more consecutive ‘0’ symbols. A table of codes and
additional information is at http://aintel.bi.ehu.es/psk31theory.html

Any string of two or more ‘0’ symbols is ignored for the purposes of decoding the received message.
This variable-length coding scheme has the following advantages:

1. Transmitting a string of ‘0’ symbols will not result in any decoded message, but allows the
PLL in the receiver to synchronize to the nominal 31.25 Hz symbol rate. Transmitting a string
of ‘0’ symbols (known as the idle signal) before the message text ensures that the receiver
synchronizes to the symbol rate of the transmitted signal.

2. No additional bits are required to synchronize the start and end of characters. Since all
characters start and end with ‘1’ and the string ‘00’ may not appear within a character, we
know that the string ‘001’ indicates the start of a character and the string ‘100’ indicates the
end of a character.

The BPSK31 mode does not use any form of error correction, although an intelligent decoder may
try to make a best guess for a string of symbols that does not map to any character. There is a
QPSK variant that provides error correction capabilities.

Exercise, write the BPSK31 signal in the standard BPSK format for a real BPSK signal

s(t) = Re[m(t)ej2πfct] = m(t) cos 2πfct =
∑

k

Dkp(t− kT ) cos 2πfct

Dk = Ak ⊗Dk−1is the differentially encoded message Ak

p2(t) = [1− cos(πt/T )]/2 for t{0, 2T}.

Hint: see the figure below.
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The red impulses show the impulses Dk corresponding to the differentially encoded message bits.
The green pulses are the decoder output, i.e. the differentially decoded pulses corresponding to the
message bits.

The message waveform m(t) is shown in blue. Each red impulse is convolved with the pulse p(t) to
yield an RC pulse spanning two symbol periods. The pulses overlap resulting in the blue waveform
m(t). Note that m(t) has zero crossings one-half symbol time after a green “1” message bit.

The signal waveform with carrier is shown at the bottom. The envelope of the signal waveform
crosses zero at T/2 after a green “1” message bit. Thus the message can be obtained by observing
the zero crossings. In the figure below, the message is obtained in this way, however, decoder output
is polarity reversed by convention for BPSK31, so that a change in the received sequence is decoded
as a “0” bit and no change as a “1” bit.
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7.6.3 DPSK with RRC frequency domain pulse

The wireless LAN standard 802.11b includes different modes for bit rates of 1,2,5.5 and 11 MBits/sec.
IN all caes the signal looks like an 11 MHz BPSK and QPSK waveform using square-root raised
cosine (RRC) pulse shaping in the frequency domain with 75% excess bandwidth.

7.7 QPSK variants

In this section, we consider two variants of QPSK: offset QPSK and π/4 QPSK.

7.7.1 Offset QPSK

The offset QPSK signal is the same as the QPSK signal, except that the quadrature component is
delayed by half a symbol period.

Thus we modify the complex baseband signal for offset QPSK

s̃(t) = i(t) + jq(t− T/2) , where we use the expressions for i(t), q(t) from QPSK, repeated here for
convenience
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i(t) =
∑

k

Akp(t− kT ) = A0p(t) +A1p(t− T ) +A2p(t− 2T ) + .

and

q(t) =
∑

k

Bkp(t− kT ) = B0p(t) +B1p(t− T ) +B2p(t− 2T ) + .

For QPSK, we choose Ak = ±1 and Bk = ±1, so that Ck = ±1± j.

The real offset QPSK signal is

s(t) = i(t) cos 2πf2t− q(t− T/2) sin 2πf2t

7.7.2 π/4 QPSK

The π/2 QPSK signal is the same as QPSK except that we code

Ak = Ak−1 cosφk −Bk−1 sinφk = cos δk
Bk = Ak−1 sinφk −Bk−1 cosφk = sin δk

We define the phases φk per the following table

Ak Bk φk
1 1 π/4
0 1 3π/4
0 0 -3π/4
1 0 -π/4

We use these expressions for Ak, Bk in the expressions for i(t), q(t) from QPSK and find the real
QPSK signal s(t) = i(t) cos 2πf2t− q(t) sin 2πf2t

We find the phases δk take on 8 possible values nπ/4 for n{1, ..., 8} However, successive values of
δkare never nπ/2 apart, as shown in the signal constellation below.
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Chapter 8

Frequency shift keying

Phase shift keying is a digital form of general phase modulation, where the carrier frequency is
modulated in step with the message waveform.

8.1 FSK intuition

One intuitive approach is to write a binary FSK signal as follows

s0(t) = A cos(2πf0t+ φ0), kT ≤ t ≤ (k + 1)T for binary 0
s1(t) = A cos(2πf1t+ φ1), kT ≤ t ≤ (k + 1)T for binary 1

This FSK signal switches the carrier frequency between f0 and f1 every symbol time depending on
the data 0 or 1.

For coherent FSK with continuous phase φ0 = φ1 = φ

We choose f0 and f1to obtain orthogonal FSK where

∫ (k+1)T
kT cos(2πf0t+ φ) cos(2πf1t+ φ)dt = 0

191
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We can prove this is true provided that

f0 =
2m− n

4T
and f1 =

2m+ n

4T
so that f1 − f0 =

n

2T

This relationship determines the condition for orthogonality between the two frequencies.

When n = 1 we have a special case of FSK called minimum shift keying (MSK).

For MSK, the frequency difference is half the symbol rate.

8.2 FSK complex envelope

8.2.1 FM equations

We want to write FSK in terms of the complex envelope

s(t) = Re{s̃(t)ej2πfct} where

s̃(t) = a(t)ejφ = a(t) cosφ+ ja(t) sinφ
= i(t) + jq(t)

We expect the FSK signal to have constant amplitudea(t) = Ac and time varying phase φ(t) .

To find the complex envelope for FSK, we start with the FM equations, in particular

fi(t) = fc + kfm(t)

where the message is a square wave, or more precisely,

m(t) =
∑
k Akp(t− kT )and Ak = ±1,

p(t) = 1 for 0 ≤ t ≤ T
p(t) = 0 otherwise

The modulation sensitivity kf is chosen so that

fi(t) = fc + kfAk = fc + ∆f = f0 for binary 0
fi(t) = fc + kfAk = fc −∆f = f1 for binary 1

The FSK signal is written in standard format

s(t) = a(t) cos θ(t) = a(t) cos[2πfct+ φ(t)]

where θ(t) = 2πfct+ φ(t)has a linear variation at rate fcand a time varying part φ(t)
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fi(t) =
1

2π

dθ(t)

dt
= fc +

1

2π

dφ(t)

dt

Combining these 3 starting points, we can write:

θ(t) = 2π
∫ t

0
fi(α)dα = 2π ∫ t0[fc + kfm(α)]dα

= 2πfct+ kf
∫ t

0
m(α)dα

s(t) = Ac cos
[
2πfct+ 2πkf

∫ t
0
m(α)dα

]

= Ac cos
[
2πfct+ 2πkf

∫ t
0

∑
k Akp(α− kT )dα

]

= Ac cos [2πfct+ φ(t)]

Thus

φ(t) = 2πkf

∫ t

0

∑

k

Akp(α− kT )dα

8.2.2 FSK phase ramps

The integral

φ(t) = 2πkf

∫ t

0

∑

k

Akp(α− kT )dα

can be defined over intervals kT ≤ t ≤ (k + 1)T for each pulse with data Ak

For example, if we assume A0 = +1 for 0 ≤ t ≤ T

φ(t) = 2πkf
∫ t

0
A0 · 1 · dα = 2πkf t = 2π∆ft for 0 ≤ t ≤ T

fi(t) = fc + 1
2π

dφ(t)
dt = fc + kf = fc + ∆f = f1

Observe that the phase is a ramp that starts at φ(t = 0) = 0 and increases linearly to φ(t = T ) =
2π∆fT

Recall that for orthogonal FSK, f1 − f0 = n
2T and note that f1 − f0 = 2∆f

Thus ∆f = n
4T , so that the smallest (n = 1) frequency shift away from the center frequency fc is

one quarter the symbol rate, i.e.

f1 = fc + ∆f = fc + 1/4T
f0 = fc −∆f = fc − 1/4T

From the phase ramp result φ(t = T ) = 2π∆fT , we find

φ(t = T ) = 2π
n

4T
T =

nπ

2
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If we choose the two FSK frequencies to be as close as possible and still orthogonal (n = 1), then
the phase ramps from φ(t = 0) = 0 to φ(t = T ) = π/2

Exercise: Continue the example for the next symbol. Assume A1 = −1 for T ≤ t ≤ 2T , and show
that the phase will ramp down from

φ(t = T ) = π/2 to φ(t = 2T ) = 0

The figure below shows the phase φ(t) and the FSK signal s(t) for an example bit pattern 1010011110

The phase may wander far away from zero. In most cases, we choose the data pattern to have the
same number of 1s and 0s on average, so that the phase will stay close to zero on average.

8.2.3 FSK complex envelope

The FM signal s(t)can be written in standard IQ format:

s(t) = Re{a(t)ejφ(t)ej2πfct} =
Re{[I(t) + jQ(t)][cos 2πfct+ jsin2πfct]}
= I(t) cos 2πfct−Q(t)sin2πfct
= a(t) cos[2πfct+ φ(t)]

Thus for FSK:
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a(t) = Ac
φ(t) = 2πkf

∫ t
0

∑
k Akp(α− kT )dα

I(t) = Ac cos 2πkf
∫ t

0

∑
k Akp(α− kT )dα

Q(t) = Ac sin 2πkf
∫ t

0

∑
k Akp(α− kT )dα

As shown above, if we assume A0 = +1 for 0 ≤ t ≤ T

φ(t) = 2πkf
∫ t

0

∑
k Akp(α− kT )dα

= 2πkf
∫ t

0
A0 · 1 · dα = 2πkf t = 2π∆ft for 0 ≤ t ≤ T

I(t) = cosφ(t) = cos 2π∆ft for 0 ≤ t ≤ T
Q(t) = sinφ(t) = sin 2π∆ft for 0 ≤ t ≤ T
fi(t) = fc + 1

2π
dφ(t)
dt = fc + kf = fc + ∆f = f1

8.3 MSK and offset QPSK

The real offset QPSK signal with a symbol rate 1/T is

s(t) = i(t) cos 2πf2t− q(t− T/2) sin 2πf2t

Assuming the data symbols at the sampling time are i(t) = Ik = ±1, q(t) = Qk = ±1, kT ≤ t ≤
(k + 1)T

Consider a variation of this QPSK signal at a slower symbol rate 1/2T and a cosine pulse shape
over two symbol periods

s(t) = i(t) cos
πt

2T
cos 2πf2t− q(t− T ) sin

πt

2T
sin 2πf2t

From trigonometric identifies, we can write

s(t) = cos[2π(f − IkQk
1

4T
)t+

π

2
(1− Ik)], kT ≤ t ≤ (k + 1)T

Thus MSK and offset QPSK with cosine pulse shaping are equivalent with

f1 = fc + ∆f = fc + 1/4T
f0 = fc −∆f = fc − 1/4T



Appendix A

Useful formulas

ejθ = cos θ + j sin θ

cosθ =
ejθ + e−jθ

2

sinθ =
ejθ − e−jθ

2j

ej(α+β) = cos(α+ β) + j sin(α+ β)

= ejαejβ

= (cosα+ j sinα) (cosβ + j sinβ)

= cosα cosβ − sinα sinβ + j (cosα sinβ + sinα cosβ)

cos (α+ β) = cosα cosβ − sinα sinβ

sin (α+ β) = cosα sinβ + sinα cosβ

cos (α− β) = cosα cosβ + sinα sinβ

sin (α− β) = sinα cosβ − cosα sinβ

cosα cosβ =
cos (α− β) + cos (α+ β)

2

sinα cosβ =
sin (α− β) + sin (α+ β)

2

sinα sinβ =
cos (α− β)− cos (α+ β)

2

cosα sinβ =
− sin (α− β) + sin (α+ β)

2
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M(f) = FFT{m(t)},m(t)↔M(f)

= ∫∞t=−∞m(t)e−j2πftdt

ej2πfct ↔ δ(f − fc)
m(t)ej2πfct ↔M(f − fc)

s̃(t) = a(t)ejφ(t)

s+(t) = s̃(t)ej2πfct

s−(t) = s̃(t)∗e−j2πfct

s(t) = s+(t)/2 + s−(t)/2

= Re [s+(t)]

= Re [s−(t)]

S̃(f) = FFT{s̃(t)}, s̃(t)↔ S̃(f)

s̃n = s̃(t = nTs), Ts = 1/fs, S̃k = S̃(f = kf0)

S̃k =

∫ T0=nTs

t=0

s̃(t)e−j2πftdt|t=nTs,f=kf0

=

N−1∑

n=0

s̃ne
−j2πkf0nTs

=

N−1∑

n=0

s̃ne
−j2πnk/N

Tsf0 = Ts/T0 = f0/fs = 1/N
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